BCECE Engineering BCECE Engineering Solved Paper-2010

  • question_answer
    Solution of the differential equation \[y\left[ x\cos \left( \frac{y}{x} \right)+y\sin \left( \frac{y}{x} \right) \right]dx\] \[-x\left[ y\sin \left( \frac{y}{x} \right)-x\cos \left( \frac{y}{x} \right) \right]dy=0\]is

    A)         \[xy\cos \left( \frac{y}{x} \right)=K\]

    B)         \[\cos \left( \frac{x}{y} \right)=K\,xy\]

    C)                  \[\frac{x}{y}\cos \left( \frac{y}{x} \right)=K\]    

    D)  None of these

    Correct Answer: A

    Solution :

    The given differential equation is \[y\left[ x\cos \left( \frac{y}{x} \right)+y\sin \left( \frac{y}{x} \right) \right]dx\] \[-x\left[ y\sin \left( \frac{y}{x} \right)-x\cos \left( \frac{y}{x} \right) \right]dy=0\] \[\Rightarrow \]\[\frac{dy}{dx}=\frac{y\left[ x\cos \left( \frac{y}{x} \right)+y\sin \left( \frac{y}{x} \right) \right]}{x\left[ y\sin \left( \frac{y}{x} \right)-x\cos \left( \frac{y}{x} \right) \right]}\]                 Putting \[y=vx,\]                 \[\Rightarrow \]               \[\frac{dy}{dx}=v+x\frac{dv}{dx}\]in Eq. (i), we get                                 \[v+x\frac{dv}{dx}=\frac{vx[x\cos v+vx\sin v]}{x[vx\sin v-x\cos v]}\]                 \[\Rightarrow \]               \[x\frac{dv}{dx}=\frac{vx\cos v+{{v}^{2}}x\sin v}{vx\sin v-x\cos v}-v\]                 \[\Rightarrow \]\[x\frac{dv}{dx}\]                 \[=\frac{vx\operatorname{cosv}+{{v}^{2}}x\sin v-{{v}^{2}}x\sin v+xv\cos v}{vx\sin v-x\cos v}\]                 \[\Rightarrow \]\[x\frac{dv}{dx}=\frac{2xv\cos v}{xv\sin v-x\cos v}\]                                 \[\Rightarrow \]\[\frac{v(\sin v-\cos v)dv}{v\cos v}=2\frac{dx}{x}\] Integrating both sides, we get                 \[-\int_{{}}^{{}}{\frac{(\cos v-v\sin v)dv}{v\cos v}}=2\int_{{}}^{{}}{\frac{dx}{x}}\]                 \[\Rightarrow \]\[-\log |v\cos v|=2\log |x|+\log c\]                 \[\Rightarrow \]\[\log \left| \frac{1}{v\cos v} \right|=\log |{{x}^{2}}|+\log c\]                 \[\Rightarrow \]\[\frac{1}{v\cos v}=c{{x}^{2}}\]                 \[\Rightarrow \]\[\frac{x}{y}\sec \left( \frac{y}{x} \right)=c{{x}^{2}}\]                 \[\Rightarrow \]\[xy\cos \left( \frac{y}{x} \right)=\frac{1}{c}\]                 \[\Rightarrow \]\[xy\cos \left( \frac{y}{x} \right)=k,\left( k=\frac{1}{c} \right)\]


You need to login to perform this action.
You will be redirected in 3 sec spinner