BCECE Engineering BCECE Engineering Solved Paper-2010

  • question_answer
    If \[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}\theta d\theta ,}\] where n is a positive integer, then \[n({{I}_{n-1}}+{{I}_{n+1}})\]is equal to

    A)  1                                            

    B)  \[n-1\]

    C)         \[\frac{1}{n-1}\]             

    D)         None of these

    Correct Answer: A

    Solution :

    We have \[{{I}_{n}}=\int_{0}^{\pi /4}{{{\tan }^{n}}\theta \,d\theta }\] Now,     \[{{I}_{n+1}}=\int_{0}^{\pi /4}{{{\tan }^{n+1}}}\theta \,d\theta \]                 \[=\int_{0}^{\pi /4}{{{\tan }^{n-1}}\theta {{\tan }^{2}}\theta \,d\theta }\]                 \[=\int_{0}^{\pi /4}{{{\tan }^{n-1}}\theta }(se{{c}^{2}}\theta -1)d\theta \] \[\Rightarrow \]               \[{{I}_{n+1}}=\int_{0}^{\pi /4}{{{\tan }^{n-1}}\theta {{\sec }^{2}}\theta \,d\theta }\]                 \[-\int_{0}^{\pi /4}{{{\tan }^{n-1}}\theta }\,d\theta \] \[\Rightarrow \]               \[{{I}_{n+1}}=\int_{0}^{\pi /4}{{{\tan }^{n-1}}}\theta {{\sec }^{2}}\theta d\theta -{{I}_{n-1}}\] ?(i)                 Now,     \[\int_{0}^{\pi /4}{{{\tan }^{n-1}}\theta }{{\sec }^{2}}\theta \,d\theta \]                 Putting \[\tan \theta ={{t}_{1}}\Rightarrow {{\sec }^{2}}\theta \,d\theta =dt\]                                 \[=\int_{0}^{1}{{{t}^{n-1}}dt}\]                                 \[=\left[ \frac{{{t}^{n}}}{n} \right]_{0}^{1}=\left( \frac{1}{n}-0 \right)\] \[=\frac{1}{n}\] Putting this value in Eq. (i), we get                                 \[{{I}_{n+1}}=\frac{1}{n}-{{I}_{n-1}}\]                 \[\Rightarrow \]               \[{{I}_{n+1}}+{{I}_{n-1}}=\frac{1}{n}\]                 \[\Rightarrow \]               \[n({{I}_{n-1}}+{{I}_{n+1}})=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner