JEE Main & Advanced AIEEE Solved Paper-2004

  • question_answer
    A particle of mass m is attached to a spring (of spring constant\[k\] and has a natural angular frequency\[{{\omega }_{0}}\]. An external force F(t) proportional to \[\cos \omega t(\omega \ne {{\omega }_{0}})\]is applied to the oscillator. The time displacement of the oscillator will be proportional to

    A) \[\frac{m}{\omega _{0}^{2}-{{\omega }^{2}}}\]                

    B) \[\frac{1}{m(\omega _{0}^{2}-{{\omega }^{2}})}\]          

    C)        \[\frac{1}{m(\omega _{0}^{2}+{{\omega }^{2}})}\]         

    D)        \[\frac{m}{\omega _{0}^{2}+{{\omega }^{2}}}\]

    Correct Answer: B

    Solution :

    Initial angular velocity of particle\[={{\omega }_{0}}\] and at any instant t, angular velocity\[=\omega \] Therefore, for a displacement\[x,\]the resultant acceleration \[f=m(\omega _{0}^{2}-{{\omega }^{2}})x\]                                       ...(i) External force, \[F=m(\omega _{0}^{2}-{{\omega }^{2}})x\]              ...(ii) Since,    \[F\propto \cos \omega t\]                             (given) From Eq. (ii), \[m(\omega _{0}^{2}-{{\omega }^{2}})x\propto \cos \omega t\]                                       ...(iii) Now, equation of simple harmonic motion \[x=A\sin (\omega t+\phi )\]                   ...(iv) At \[t=0;x=A\] \[\therefore \]\[A=A\sin (0+\phi )\] \[\Rightarrow \]\[\phi =\frac{\pi }{2}\]                                   (as\[\sin \phi =1\]) \[\therefore \]  \[x=A\sin \left( \omega t+\frac{\pi }{2} \right)=A\cos \omega t\]     ...(v) Hence, from Eqs. (iii) and (v). we finally get \[m(\omega _{0}^{2}-{{\omega }^{2}})A\cos \omega t\propto \cos \omega t\] \[\Rightarrow \]\[A\propto \frac{1}{m(\omega _{0}^{2}-{{\omega }^{2}})}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner