JEE Main & Advanced AIEEE Solved Paper-2003

  • question_answer
    If the equation of the locus of a point equidistant from the points \[({{a}_{1}}-{{b}_{1}})\] and \[({{a}_{2}}-{{b}_{2}})\] is \[({{a}_{1}}-{{a}_{2}})x+({{b}_{1}}-{{b}_{2}})\,y+c=0\], then the value of 'c' is     AIEEE  Solved  Paper-2003

    A) \[\frac{1}{2}(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2})\]             

    B) \[a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}\]     

    C) \[\frac{1}{2}\,\,(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2})\]

    D)       \[\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}\]

    Correct Answer: A

    Solution :

    Let \[P(\alpha ,\beta )\] be the point which is equidistant to \[A({{a}_{1}},{{b}_{1}})\] and \[B({{a}_{2}},{{b}_{2}})\]. \[\therefore \]      \[{{(PA)}^{2}}={{(PB)}^{2}}\] \[\Rightarrow {{(\alpha -{{a}_{1}})}^{2}}+{{(\beta -{{b}_{1}})}^{2}}={{(\alpha ={{a}_{2}})}^{2}}+{{(\beta -{{b}_{2}})}^{2}}\] \[\Rightarrow \]                                       \[={{\alpha }^{2}}+a_{2}^{2}\,-2\alpha {{a}_{2}}\,+{{\beta }^{2}}+b_{2}^{2}-\,2\beta {{b}_{2}}\]                                                                         Thus, the equation of locus (a,p) is But the given equation is                                                        Alternate Solution Since, the points  and  satisfy the equation so that                         ... (i) and               ...(ii) On adding Eqs. (i) and (ii), we get     \[({{a}_{1}}+{{a}_{2}})\,({{a}_{1}}-{{a}_{2}})\,+({{b}_{1}}+{{b}_{2}})\,({{b}_{1}}-{{b}_{2}})+2c=0\] \[\Rightarrow \,\,\,\,\,2c=-(a_{1}^{2}-a_{2}^{2}\,+b_{1}^{2}\,-b_{2}^{2})\] \[\Rightarrow \,\,\,\,c=\frac{1}{2}(a_{2}^{2}\,+b_{2}^{2}-a_{1}^{2}-b_{1}^{2})\]


You need to login to perform this action.
You will be redirected in 3 sec spinner