JEE Main & Advanced AIEEE Solved Paper-2002

  • question_answer
    \[\int{_{-\pi }^{\pi }}\frac{2\pi (1+\sin x)}{1+{{\cos }^{2}}x}dx\] is   AIEEE  Solved  Paper-2002

    A) \[\frac{{{\pi }^{2}}}{4}\] 

    B)                           \[{{\pi }^{2}}\]    

    C)           zero                         

    D)           \[\frac{\pi }{2}\]

    Correct Answer: B

    Solution :

       \[\int_{-a}^{a}{f(x)}\,dx=\left\{ \begin{matrix}    {{_{0}^{2}}^{\int_{0}^{a}{f(x)dx,\,\,\text{if}}}} & f(-x)=f(x)  \\    0 & ,\text{if}\,f(-x)=-f(x)  \\ \end{matrix} \right.\] Let \[l=\int_{-\pi }^{\pi }{\frac{2x(1+\sin x)}{1+{{\cos }^{2}}x}}\]    \[=\int_{-\pi }^{\pi }{\frac{2x}{1+{{\cos }^{2}}x}dx+\int_{-\pi }^{\pi }{\frac{2x\sin x}{1+{{\cos }^{2}}x}dx}}\]    \[=0+4\int_{0}^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}\]                    \[\left( \because \frac{2x}{1+{{\cos }^{2}}x}\text{is an odd function} \right)\] \[\therefore l=4\int_{0}^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}\]                                             ... (i) \[\Rightarrow \,l=4\int_{0}^{\pi }{\frac{(\pi -x)\sin (\pi -x)}{1+{{\cos }^{2}}(\pi -x)}dx}\] \[\Rightarrow \,l=4\,\int_{0}^{\pi }{\frac{\pi \sin x}{1+{{\cos }^{2}}x}dx-4\int_{0}^{\pi }{\frac{x\sin x}{1+{{\cos }^{2}}x}dx}}\] \[\Rightarrow l=4\pi \int_{0}^{\pi }{\frac{\sin x}{1+{{\cos }^{2}}x}}dx=l\] [from Eq. (i] \[\Rightarrow l=2\pi \int_{0}^{\pi }{\frac{\sin x}{1+{{\cos }^{2}}x}dx-l}\] \[\Rightarrow \,l=2\pi \int_{0}^{\pi }{\frac{\sin x}{1+{{\cos }^{2}}x}dx}\] Put \[\cos x=t\Rightarrow -\sin xdx=dt\] \[\therefore l=-2\pi \int_{1}^{-1}{\frac{1}{1+{{t}^{2}}}dt=2\pi [{{\tan }^{-1}}t]_{-1}^{1}}\]    \[=2\pi \left[ \frac{\pi }{4}+\frac{\pi }{4} \right]=2\pi .\frac{\pi }{2}={{\pi }^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner