A) 0
B) 1
C) 2
D) \[{{2}^{(a+b+c)}}\]
Correct Answer: B
Solution :
[b] We have, \[\frac{{{x}^{a(b-c)}}}{{{x}^{b(a-c)}}}\div {{\left( \frac{{{x}^{b}}}{{{x}^{a}}} \right)}^{c}}\] \[=\frac{{{x}^{ab-ac}}}{{{x}^{ba-bc}}}\div {{({{x}^{b-a}})}^{c}}\] \[={{x}^{(ab-ac)-(ba-bc)}}\times \frac{1}{{{x}^{(b-a)c}}}\] \[={{x}^{ab-ac-ba+bc}}\times \frac{1}{{{x}^{bc-ac}}}={{x}^{-ac+bc}}.{{x}^{ac-bc}}\] \[={{x}^{ac+bc+ac-bc)}}={{x}^{0}}=1\]You need to login to perform this action.
You will be redirected in
3 sec