A) 25 m
B) 45 m
C) 30 m
D) 40 m
Correct Answer: C
Solution :
\[AB=\,\,Builiding=10\sqrt{3}\,\,m\] \[PQ=20\,\,m\] \[BQ=x\,\,m\] If \[\angle APB=\theta ,\] then \[\angle AQB=90{}^\circ -\theta \] From \[\Delta \,\,ABP,\tan \theta =\frac{AB}{BP}=\frac{10\sqrt{3}}{x+20}\] ?(i) From \[\Delta \,\,ABQ,\,\,\tan (90{}^\circ -\theta )=\frac{AB}{BQ}\] \[\Rightarrow \] \[\cot \theta =\frac{10\sqrt{3}}{x}\] ?(ii) By multiplying both equations, \[\tan \theta \cdot \cot \theta =\frac{10\sqrt{3}}{x+20}\times \frac{10\sqrt{3}}{x}\] \[\Rightarrow \] \[{{x}^{2}}+20x=10\times 10\times 3\] \[\Rightarrow \] \[{{x}^{2}}+20x-300=0\] \[\Rightarrow \] \[{{x}^{2}}+30x-10x-300=0\] \[\Rightarrow \] \[x(x+30)-10(x+30)=0\] \[\Rightarrow \] \[(x-10)(x+30)=0\] \[\Rightarrow \] \[x=10,\ne -30\]You need to login to perform this action.
You will be redirected in
3 sec