A) \[\frac{11\pi }{24}\]
B) \[\frac{\pi }{12}\]
C) \[\frac{\pi }{24}\]
D) \[\frac{5\pi }{24}\]
Correct Answer: A
Solution :
\[2x+3x+5x=180{}^\circ -45{}^\circ =135{}^\circ \] \[\Rightarrow \] \[10x=135{}^\circ \] \[\Rightarrow \] \[x=\frac{135{}^\circ }{10}=\frac{27{}^\circ }{2}\] \[\therefore \]Largest angle \[=5x+15{}^\circ \] \[={{\left( 5\times \frac{27}{2} \right)}^{{}^\circ }}+15{}^\circ \] \[=\frac{135{}^\circ +30{}^\circ }{2}=\frac{165{}^\circ }{2}\] \[\because \]\[180{}^\circ =\pi \]radian \[\therefore \]\[\frac{165{}^\circ }{2}=\frac{\pi }{180}\times \frac{165}{2}=\frac{11\pi }{24}\]radianYou need to login to perform this action.
You will be redirected in
3 sec