A) Isosceles triangle
B) Right angled triangle
C) Equilateral triangle
D) Right isosceles triangle
Correct Answer: D
Solution :
In \[\Delta ABC\] \[AC=\sqrt{2}K\] \[A{{C}^{2}}=2{{K}^{2}}\] \[A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}\] So \[\Delta \text{ }ABC\]is right angled triangle So, in \[\Delta \text{ }ABC\] \[\frac{AB}{AC}=\frac{K}{\sqrt{2}K}=\frac{1}{\sqrt{2}}\] So \[\cos \theta =\frac{1}{\sqrt{2}}\] \[\theta ={{45}^{o}}\] So, \[ABC,\text{ }\angle B={{90}^{o}};\text{ }\angle C={{45}^{o}};\text{ }\angle A={{45}^{o}}\]So, ABC is right is oscles triangle.You need to login to perform this action.
You will be redirected in
3 sec