12th Class Mathematics Sample Paper Mathematics Sample Paper-9

  • question_answer
    Let \[A=\{x\in R:0\le x\le 1\}.\] If \[f:A\to A\] is defined by
    \[f(x)=\left\{ \begin{matrix}    x, & i\text{f}\,\,x\in Q  \\    1-x & \text{if}\,\,x\notin Q  \\ \end{matrix} \right.\]
    Then prove that \[fof(x)=x\] for all \[x\in A.\]
    OR
    Let \[A=N\times N\] and * be the binary operation on A defined by (a, b) * (c, d) = \[(a+c,\,\,b+d)\]
    Show that * is commutative and associative.
    Find the identity element for * on A, if any.

    Answer:

    Let \[x\in A\] Then, either x is rational or x is irrational.  there are two cases arise                     
    Case I When \[x\in Q\]                         
    In this case, we have f(x) = x        
    \[\therefore \]      fof(x) = f(f(x))                 [\[\because \] f(x) = x]
                = f(x)
                = x
    Case II When \[x\notin Q\]
    In this case, we have \[f(x)=1-x\]
    \[\therefore \]      fof(x) = f(f(x))
                \[=f(1-x)\]
                \[=1-(1-x)\]     
    \[[\because \,\,\,x\notin Q\,\,\,\,\Rightarrow \,\,\,\,1-x\notin Q]\]
    Thus, fof(x) = x whether \[x\in Q\,\,\,\text{or}\,\,\,x\notin Q.\]
    Hence, fof(x) = x for all \[x\in A.\]     Hence proved.
    OR
    Given, (a, b)\[*\](c, d) \[=(a+c,\text{ }b+d)\]for (a, b),\[(c,\,\,d)\in A.\]
    For commutative                        
    Let (a, b), \[(c,\,\,d)\in A.\]
    Then, (a, b)\[*\] (c, d) \[=(a+c,\text{ }b+d)\]
                \[=(c+a,\,\,d+b)=(c,\,\,d)*(a,\,\,b)\]           
    [\[\because \] Commutative property of N]
    \[\Rightarrow \] (a, b)\[*\](c, d) = (c, d)\[*\](a, b)    
    Hence, \[*\] is commutative.                  
    For associative                         
    Let (a, b),(c, d),\[(e,\,\,f)\in A.\]
    Then,{(a, b)\[*\](c, d)}\[*\](e, f) \[=(a+c,\text{ }b+d)\]\[*\](e, f)       \[=\{(a+c)+e,\text{ }(b+d)+f\}\]
                \[=\{a+(c+e),\text{ }b+(d+f)\}\]           
      [\[\because \] associative property of N]
    \[=(a,\,\,b)*(c+e,\,d+f)\]
    = (a, b)\[*\]{(c, d)\[*\](e, f)}
    Hence, \[*\] is associative.                       
    For \[(a,\,\,b)\in A,\,\,if\,\,(c,\,\,d)\in A\] is identity element, then
                \[=(c+a,\,\,d+b)=(c,\,\,d)*(a,\,\,b)\]
    \[\Rightarrow \]   \[(a+c,\,b+d)(c+a,\,b+d)=(a,\,b)\]
    \[\Rightarrow \]   \[a+c=a\]and \[b+d=b\]
    \[\Rightarrow \]   c = 0, d = 0
    \[\Rightarrow \] \[(0,\,\,0)\in A\] is identity element.
    But \[(0,\,\,0)\notin A\]
    Hence, no identity element.                


You need to login to perform this action.
You will be redirected in 3 sec spinner