12th Class Mathematics Sample Paper Mathematics Sample Paper-9

  • question_answer
    In an activity organised in the school, Rohan was given the task to put the slogan 'Satyamev Jayte' on a trapezium shaped card sheet. If the length of three sides of a trapezium other than base are equal to 10 cm, find the area of the trapezium when it is maximum. Explain the meaning of 'Satyamev Jayte'.

    Answer:

    Let ABCD be a trapezium such that DC is parallel to AB and AD = 10cm = DC = BC.               Now, draw perpendiculars DP and CQ from D and C, on AB, respectively. \[\therefore \]      \[\Delta APD\sim \Delta BQC\]                         Therefore,     PA = QB = x cm                  In right angled \[\Delta APD,\] we have       \[A{{D}^{2}}=A{{P}^{2}}+P{{D}^{2}}\]            [by Pythagoras theorem] \[\Rightarrow \]   \[P{{D}^{2}}=A{{D}^{2}}-A{{P}^{2}}\] \[\Rightarrow \]   \[PD=\sqrt{A{{D}^{2}}-A{{P}^{2}}}\] \[\Rightarrow \]   \[PD=\sqrt{100-{{x}^{2}}}cm\] Similarly, in \[\Delta BQC,\,\,QC=\sqrt{100-{{x}^{2}}}cm\] If A denotes the area of the trapezium ABCD, then \[A=f(x)=\frac{1}{2}\](Sum of parallel sides) \[\times \] Height \[\Rightarrow \]   \[f(x)=\frac{1}{2}(AB+DC)\times PD\] \[\Rightarrow \]   \[f(x)=\frac{1}{2}[(2x+10)\times 10]\times \sqrt{100-{{x}^{2}}}\] \[\Rightarrow \]   \[f(x)=(x+10)\sqrt{100-{{x}^{2}}}\]                      ?(i) On differentiating both sides of Eq. (i) w.r.t. x, we get \[f'(x)=1\sqrt{100-{{x}^{2}}}+(x+10)\left( \frac{-\,2x}{2\sqrt{100-{{x}^{2}}}} \right)\] \[\Rightarrow \] \[f'(x)=\frac{(100-{{x}^{2}})-{{x}^{2}}-10x}{\sqrt{100-{{x}^{2}}}}\] \[=\frac{100-2{{x}^{2}}-10x}{\sqrt{100-{{x}^{2}}}}\] Again differentiating both sides w.r.t. x, we get \[f'(x)=\frac{\left[ \begin{align}   & \sqrt{100-{{x}^{2}}}(-\,4x-10) \\  & -(100-2{{x}^{2}}-10x)\left( \frac{-\,2x}{2\sqrt{100-{{x}^{2}}}} \right) \\ \end{align} \right]}{(100-{{x}^{2}})}\] \[=\frac{\left[ (100-{{x}^{2}})(-\,4x-10)+(100x-2{{x}^{3}}-10{{x}^{2}}) \right]}{(100-{{x}^{2}})\sqrt{100-{{x}^{2}}}}\] \[=\frac{\left[ (-\,400x-1000+4{{x}^{3}}+10{{x}^{2}})+(100x-2{{x}^{3}}-10{{x}^{2}}) \right]}{(100-{{x}^{2}})\sqrt{100-{{x}^{2}}}}\] For maxima or minima, put             \[f'(x)=0\] \[\Rightarrow \]   \[\frac{100-2{{x}^{2}}-10x}{\sqrt{100-{{x}^{2}}}}=0\] \[\Rightarrow \]   \[100-2{{x}^{2}}-10x=0\] \[\Rightarrow \]   \[2{{x}^{2}}+10x-100=0\] \[\Rightarrow \]   \[2({{x}^{2}}+5x-50)=0\] \[\Rightarrow \]   \[{{x}^{2}}+5x-50=0\] \[\Rightarrow \]   \[{{x}^{2}}+10x-5x-50=0\] \[\Rightarrow \]   \[x(x+10)-5(x+10)=0\] \[\Rightarrow \]   \[(x+10)(x-5)=0\] \[\therefore \]      \[x=-\,10,\] x = 5 \[\Rightarrow \]x = 5 [\[\because \,\,x\] represents distance, so it cannot be negative] On putting x = 5 in Eq. (ii), we get \[{{[f''(x)]}_{at\,\,x=5}}=\frac{\left( \begin{align}   & [-\,400(5)-1000+4{{(5)}^{3}}+10{{(5)}^{2}} \\  & +[100(5)-2{{(5)}^{3}}-10{{(5)}^{2}}] \\ \end{align} \right)}{(100-25)\sqrt{100-25}}\] \[=\frac{(-\,3000+500+250)+(500-250-250)}{75\sqrt{75}}\] \[=\frac{-\,2250}{75\sqrt{75}}=\frac{-\,30}{\sqrt{75}}<0\] Hence, the area of trapezium is maximum, when x = 5 and the area is given by \[f(5)=(5+10)\sqrt{100-25}=15\sqrt{75}=75\sqrt{3}\,c{{m}^{2}}\] Value 'Satyamev Jayte' means truth always wins. We should always follow the path of truth in our life.


You need to login to perform this action.
You will be redirected in 3 sec spinner