12th Class Mathematics Sample Paper Mathematics Sample Paper-8

  • question_answer
    Evaluate \[\int{\frac{1}{3{{x}^{2}}+5x+7}\,dx.}\]
    OR
    Evaluate \[\int{\frac{x{{e}^{x}}}{{{(x+1)}^{2}}}\,dx.}\]

    Answer:

    Let \[l=\int{\frac{1}{3{{x}^{2}}+\,5x+7}}\,dx=\int{\frac{dx}{3\left( {{x}^{2}}+\frac{5x}{3}+\frac{7}{3} \right)}}\]
    \[=\frac{1}{3}\int{\frac{dx}{{{x}^{2}}+\frac{5x}{3}+\frac{7}{3}}}\]
    \[=\frac{1}{3}\int{\frac{dx}{{{x}^{2}}+\frac{5x}{3}+\frac{7}{3}+\frac{25}{36}-\frac{25}{36}}}\]
    \[=\frac{1}{3}\int{\frac{dx}{{{\left( x+\frac{5}{6} \right)}^{2}}+\left( \frac{7}{3}-\frac{25}{36} \right)}}\]
    \[=\frac{1}{3}\int{\frac{dx}{{{\left( x+\frac{5}{6} \right)}^{2}}+\left( \frac{84-25}{36} \right)}}\]
    \[=\frac{1}{3}\int{\frac{dx}{{{\left( x+\frac{5}{6} \right)}^{2}}+{{\left( \frac{\sqrt{59}}{36} \right)}^{2}}}}\]
    \[=\frac{1}{3}\cdot \frac{6}{\sqrt{59}}{{\tan }^{-1}}\left( \frac{x+\frac{5}{6}}{\frac{\sqrt{59}}{6}} \right)+C\]
      \[\left[ \because \,\,\int{\frac{dx}{{{a}^{2}}+{{x}^{2}}}=\frac{1}{a}{{\tan }^{-1}}\frac{x}{a}} \right]\]
    \[\therefore \]      \[l=\frac{2}{\sqrt{59}}{{\tan }^{-1}}\left( \frac{6x+5}{\sqrt{59}} \right)+C\]
    OR
    Let \[l=\int{\frac{x{{e}^{x}}}{{{(x\,+1)}^{2}}}}\,dx\]
    \[=\int{\frac{(x+1-1)\,{{e}^{x}}}{{{(x\,+1)}^{2}}}}\,dx\]
    \[=\int{\left[ \frac{x+1}{{{(x\,+1)}^{2}}}-\frac{1}{{{(x\,+1)}^{2}}} \right]}\,{{e}^{x}}dx\]   
                \[=\int{\left[ \frac{1}{x+1}-\frac{1}{{{(x\,+1)}^{2}}} \right]}\,{{e}^{x}}dx\]
    Now, consider \[f(x)=\frac{1}{1+x},\] then \[f'(x)=\frac{-\,1}{{{(1+x)}^{2}}}.\] Thus, the given integrand is of the form
                \[\int{{{e}^{x}}(f(x)+f'(x))\,dx.}\]
    Hence, \[l=\frac{{{e}^{x}}}{x+1}+C\]
     \[[\because \,\,{{e}^{x}}\{f(x)+f'(x)\}dx={{e}^{x}}(x)]\]


You need to login to perform this action.
You will be redirected in 3 sec spinner