12th Class Mathematics Sample Paper Mathematics Sample Paper-7

  • question_answer
    Find \[{{A}^{-1}},\] if \[A=\left[ \begin{matrix}    0 & 1 & 1  \\    1 & 0 & 1  \\    1 & 1 & 0  \\ \end{matrix} \right]\] and show that \[{{A}^{-1}}=\frac{{{A}^{2}}-3I}{2}.\]
    OR
    If \[A=\left[ \begin{matrix}    1 & -\,1 & 1  \\    2 & 1 & -\,3  \\    1 & 1 & 1  \\ \end{matrix} \right],\] find \[{{A}^{-1}}\] and hence solve the system of linear equation \[x+2y+z=4,\] \[-\,x+y+z=0,\] \[x-3y+z=2.\]

    Answer:

    We have,
    Clearly,
    \[\therefore \] \[{{A}^{-1}}\] exists.
    Now, let us evaluate the cofactors of elements of \[|A|.\]
    Clearly, \[{{C}_{11}}={{(-\,1)}^{1+1}}\left| \begin{matrix}    0 & 1  \\    1 & 0  \\ \end{matrix} \right|=-\,1\]
    \[{{C}_{21}}={{(-\,1)}^{2+1}}\left| \begin{matrix}    1 & 1  \\    1 & 0  \\ \end{matrix} \right|=1,\] \[{{C}_{31}}={{(-\,1)}^{3+1}}\left| \begin{matrix}    1 & 1  \\    0 & 1  \\ \end{matrix} \right|=1,\]
    \[{{C}_{12}}={{(-\,1)}^{1+2}}\left| \begin{matrix}    1 & 1  \\    1 & 0  \\ \end{matrix} \right|=1,\] \[{{C}_{22}}={{(-\,1)}^{2+2}}\left| \begin{matrix}    0 & 1  \\    1 & 0  \\ \end{matrix} \right|=1,\]
    \[{{C}_{32}}={{(-\,1)}^{3+2}}\left| \begin{matrix}    0 & 1  \\    1 & 1  \\ \end{matrix} \right|=1,\] \[{{C}_{13}}={{(-\,1)}^{1+3}}\left| \begin{matrix}    1 & 0  \\    1 & 1  \\ \end{matrix} \right|=1,\]
    \[{{C}_{23}}={{(-\,1)}^{2+3}}\left| \begin{matrix}    0 & 1  \\    1 & 1  \\ \end{matrix} \right|=1\]
    and \[{{C}_{33}}={{(-\,1)}^{3+3}}\left| \begin{matrix}    0 & 1  \\    1 & 0  \\ \end{matrix} \right|=-1\]
    \[\therefore \]adj
    Thus, \[{{A}^{-1}}=\frac{1}{|A|}\] adj
    Now, consider
    Hence proved.
    OR
    We have,
    Clearly,
    \[=4+5+1=10\ne 0\]
    \[\therefore \] \[{{A}^{-1}}\] exist.
    Now, let us find the cofactors \[{{C}_{ij}}\] of elements \[{{a}_{ij}}\]in A.
    Clearly, \[{{C}_{11}}={{(-\,1)}^{1+1}}\left| \begin{matrix}    1 & -\,3  \\    1 & 1  \\ \end{matrix} \right|=4,\]
    \[{{C}_{12}}={{(-1)}^{2+1}}\left| \begin{matrix}    2 & -\,3  \\    1 & 1  \\ \end{matrix} \right|=-\,5,\] \[{{C}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}    2 & 1  \\    1 & 1  \\ \end{matrix} \right|=1,\]
    \[{{C}_{21}}={{(-\,1)}^{2+1}}\left| \begin{matrix}    -\,1 & 1  \\    1 & 1  \\ \end{matrix} \right|=2,\] \[{{C}_{22}}={{(-\,1)}^{2+2}}\left| \begin{matrix}    1 & 1  \\    1 & 1  \\ \end{matrix} \right|=0,\]
    \[{{C}_{23}}={{(-\,1)}^{2+3}}\left| \begin{matrix}    1 & -\,1  \\    1 & 1  \\ \end{matrix} \right|=-\,2,\] \[{{C}_{31}}={{(-\,1)}^{3+1}}\left| \begin{matrix}    -\,1 & 1  \\    1 & -\,3  \\ \end{matrix} \right|=2,\] \[{{C}_{32}}={{(-\,1)}^{3+2}}\left| \begin{matrix}    1 & 1  \\    2 & -\,3  \\ \end{matrix} \right|=5,\] \[{{C}_{33}}={{(-\,1)}^{3+3}}\left| \begin{matrix}    1 & -\,1  \\    2 & 1  \\ \end{matrix} \right|=3\]
    \[\therefore \] adj
    \[\Rightarrow \]        ?(i)
    Now, let us solve the given system of linear equations which can be written in matrix form as
    OR
    \[{{A}^{T}}X=B,\] where  and
    Since, \[|{{A}^{T}}|\,\,=\,\,|A|\,\,=10\ne 0.\] So, the given system of equations is consistent and have a unique solution given by \[X={{({{A}^{T}})}^{-1}}B={{({{A}^{-1}})}^{T}}B\]
    \[\Rightarrow \] \[x=\frac{9}{5},\] \[y=\frac{2}{5}\] and \[z=\frac{7}{5},\] which is the required solution.


You need to login to perform this action.
You will be redirected in 3 sec spinner