12th Class Mathematics Sample Paper Mathematics Sample Paper-5

  • question_answer
    Find the equation of the plane passing through the intersection of the planes
    \[\vec{r}\cdot (\hat{i}+3\hat{j})-6=0\] and \[\vec{r}\cdot (3\hat{i}-\hat{j}-4\hat{k})=0,\] whose perpendicular distance from origin is unity.
    OR
    If  \[\vec{a}\cdot \vec{b}=\vec{a}\cdot \vec{c},\,\,\vec{a}\times \vec{b}=\vec{a}\times \vec{c}\] and \[\vec{a}\ne \vec{0},\] then prove that \[\vec{b}=\vec{c}.\]

    Answer:

    Given equations of planes are \[\vec{r}\cdot (\hat{i}+3\hat{j})-6=0\] and  \[\vec{r}\cdot (3\hat{i}-\hat{j}-4\hat{k})=0.\]
    On comparing with \[\vec{r}\cdot \vec{n}=d,\] we get
    \[{{\vec{n}}_{1}}=(\hat{i}+3\hat{j}),\] \[{{d}_{1}}=6\] and \[{{\vec{n}}_{2}}=(3\hat{i}-\hat{j}-4\hat{k}),\]
    \[{{d}_{2}}=0\]
    Now, equation of the plane through the intersection of given planes is
    \[\vec{r}\cdot ({{\vec{n}}_{1}}+\lambda {{\vec{n}}_{2}})={{d}_{1}}+{{d}_{2}}\lambda \]
    \[\Rightarrow \]   \[\vec{r}\cdot [(\hat{i}+3\hat{j})+\lambda (3\hat{i}-\hat{j}-4\hat{k})]=6+0\cdot \lambda \]
    \[\Rightarrow \]   \[\vec{r}\cdot [(1+3\lambda )\hat{i}+(3-\lambda )\hat{j}\,\,+(-\,4\lambda )\hat{k}]=6\]?(i)
    On dividing both sides by
                \[\sqrt{{{(1+3\lambda )}^{2}}+{{(3-\lambda )}^{2}}+{{(-\,4\lambda )}^{2}},}\] we get
                \[\frac{\vec{r}\cdot [(1+3\lambda )\hat{i}+(3-\lambda )\hat{j}\,\,+(-\,4\lambda )\hat{k}]}{\sqrt{{{(1+3\lambda )}^{2}}+{{(3-\lambda )}^{2}}+{{(-\,4\lambda )}^{2}}}}\]
    \[=\frac{6}{\sqrt{{{(1+3\lambda )}^{2}}+{{(3-\lambda )}^{2}}+{{(-\,4\lambda )}^{2}}}}\]
    According to the question, the perpendicular distance of required plane from origin is unity.
    \[\therefore \]      \[=\frac{6}{\sqrt{{{(1+3\lambda )}^{2}}+{{(3-\lambda )}^{2}}+{{(-\,4\lambda )}^{2}}}}=1\]
    \[\Rightarrow \]   \[\sqrt{{{(1+3\lambda )}^{2}}+{{(3-\lambda )}^{2}}+{{(-\,4\lambda )}^{2}}}=36\]
                                        [on squaring both side]
    \[\Rightarrow \]   \[1+9{{\lambda }^{2}}+6\lambda +9+{{\lambda }^{2}}-6\lambda +16{{\lambda }^{2}}=36\]
                            \[\begin{align}   & [\because \,\,\,{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\,\,\,\text{and} \\  & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab] \\ \end{align}\]
    \[\Rightarrow \]   \[26{{\lambda }^{2}}+10=36\]
    \[\Rightarrow \]   \[{{\lambda }^{2}}=1\]
    \[\Rightarrow \]   \[\lambda =\pm 1\]
    On putting the values of \[\lambda \] in Eq. (i), we get
    \[\vec{r}\cdot [(1\pm 3)\hat{i}\,+(3\mp 1)\hat{j}\,+(\mp \,4)\hat{k}]=6\]
    \[\Rightarrow \]   \[\vec{r}\cdot [(1+3)\hat{i}\,+(3-1)\hat{j}\,+(-\,4)\hat{k}]=6\]
    or         \[\vec{r}\cdot [(1-3)\hat{i}\,+(3+1)\hat{j}\,+4\hat{k}]=6\]
    \[\Rightarrow \]   \[\vec{r}\cdot (4\hat{i}\,+2\hat{j}\,-4\hat{k})=6\]
    or         \[\vec{r}\cdot (-\,2\hat{i}\,+4\hat{j}\,+4\hat{k})=6\]
    \[\Rightarrow \]   \[4x+2y-4z-6=0\]
    or         \[-\,2x+4y+4z-6=0\]
    OR
    Given    \[\vec{a}\cdot \vec{b}=\vec{a}\cdot \vec{c}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{a}\cdot \vec{b}\,-\vec{a}\cdot \vec{c}=\vec{0}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{a}\cdot (\vec{b}\,-\vec{c})=\vec{0}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{b}\,-\vec{c}=0\] or \[\vec{a}\bot (\vec{b}\,-\vec{c})\]
    \[\Rightarrow \]   \[\vec{b}=\vec{c}\] or \[\vec{a}\bot (\vec{b}-\vec{c})\]                    ?(i)
    Also, given \[\vec{a}\times \vec{b}=\vec{a}\times \vec{c}=\vec{0}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{a}\times \vec{b}-\vec{a}\times \vec{c}=\vec{0}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{a}\times (\vec{b}-\vec{c})=\vec{0}\] and \[\vec{a}\ne \vec{0}\]
    \[\Rightarrow \]   \[\vec{b}\,-\vec{c}=\vec{0}\] or \[\vec{a}||(\vec{b}-\vec{c})\]
    \[\Rightarrow \]   \[\vec{b}=\vec{c}\] or \[\vec{a}||(\vec{b}-\vec{c})\]                      ?(ii)
    From Eqs. (i) and (ii), we get
                \[\vec{b}=\vec{c}\]        [\[\because \]\[\vec{a}\bot (\vec{b}-\vec{c})\] and \[\vec{a}||(\vec{b}-\vec{c})\]                        cannot hold simultaneously]     
      Hence proved


You need to login to perform this action.
You will be redirected in 3 sec spinner