12th Class Mathematics Sample Paper Mathematics Sample Paper-14

  • question_answer
             
    A binary operation \['*'\] is defined on the set
    \[X=R-\{-\,1\}\] by \[x*y=x+y+xy,\] \[\forall x,\] \[y\in X.\] Check whether \['*'\] is commutative and associative. Find its identity element and also find the inverse of each element of X.
    OR
    If N denotes the set of all natural numbers and R be the relation on \[N\times N\] defined by (a, b)R
    (c, d), if \[ad(b+c)=bc(a+d).\]Show that R is an equivalence relation.

    Answer:

    We have \[x*y=x+y+xy,\]\[X=R-\{-\,1\}\]
    Commutative law
    Let\[x,\,\,y\in R-\{1\}.\]Then,
    \[x*y=x+y+xy=y+x+yx\]
    [\[\because \]\[(+)\] and \[(\cdot )\]are commutative on \[R-\,\{-\,1\}\]]
    Hence, ?*? is commutative.
    Associative law
    Let        \[x,\,\,y,\,\,z\in R-\{-\,1\},\] Then,
    \[(x*y)*z=(x+y+xy)*z\]
    \[=(x+y+xy)+z+(x+y+xy)\,z\]
    \[=(x+y+z)+(xy+yz+zx)+xyz\]
    And \[x*(y*z)=x*(y+z+yz)\]
    \[=x+(y+z+yz)+x\,(y+z+yz)\]
    \[=(x+y+z)+x\,(xy+yz+xyz)\]
    \[\therefore \]      \[(x*y)*z=x*(y*z)\]
    Hence, ?*? is associative.
    Existence of identity element
    Let e be the identity element
    Then, for all \[x\in R-\{-\,1\},\] we have
    \[x*e=x\Rightarrow x+e+xe=x\]
    \[\Rightarrow \]   \[e\,(1+x)=0\Rightarrow e=0\in R-\{1\}\]
    Now,     \[x*0=x+0+x\times 0=x\]
    And      \[0*x=0+x+0\times x=x\]
    Thus, 0 is the identity element in\[R-\{-\,1\}\].
    Existence of inverse
    Let\[x\in R-\{1\}\]and\[{{x}^{-\,1}}=y\]. Then,
    \[x*y=0\Rightarrow x+y+xy=0\]
    \[\Rightarrow \]   \[x=-xy-y=-y\,(x+1)\]
    \[\Rightarrow \]
    \[y=\frac{-\,x}{x+1}\in R-\{-\,1\}\Rightarrow {{x}^{-\,1}}=\frac{-\,x}{x+1}\in R-\{-\,1\}\]
    \[\therefore \]Each \[x\in R-\{-\,1\}\]has its inverse in \[R-\{-\,1\}\].
    Or
    We have,           \[ad\,(b+c)=bc\,(a+d)\]
    Reflexive Let\[(a,\,\,b)\in N\times N\]such that
    \[ab\,(a+b)=ab\,\,(a+b)\,\,\forall \,\,a,\,\,n\in N\]
    \[\Rightarrow \]   \[ab\,(b+a)=ba\,(a+b)\Rightarrow R\]
    Symmetric
    For \[(a,\,\,b),\,\,(c,\,\,d)\in N\times N\]such that \[(a,\,\,b)\,\,R\,\,(c,\,\,d)\]
    \[\Rightarrow \]\[ad\,(b+c)=bc\,(a+d)\Rightarrow bc\,(a+d)=ad\,(b+c)\]
    \[\Rightarrow \]   \[cb\,(d+a)=da\,(c+b)\Rightarrow (c,\,\,d)\,\,R\,\,(a,\,\,b)\]
    \[\Rightarrow \]R is symmetric.
    Transitive For \[(a,\,\,b),\,\,(c,\,\,d),\,\,(e,\,\,f)\in N\times N\]such that
    \[ad\,(b+c)=bc\,(a+d)\]
    And \[cf\,(d+e)=de\,(c+f)\]
    \[\Rightarrow \]   \[adb+adc=bca+bcd\]                  ?(i)
    And      \[cfd+cfe=dec+def\]                     ?(ii)
    On multiplying Eqs. (i) and (ii) by ef and ab respectively, and then adding, we get
    \[adbef+adcef+cfdab+cfeab\]
    \[=bcaef+bcdef+decab+defab\]
    \[\Rightarrow \]   \[adcef+adcfb=bcdea+bcdef\]
    \[\Rightarrow \]   \[adcf\,(e+b)=bcde\,(a+f)\]
    \[\Rightarrow \]   \[af\,(b+e)=be\,(a+f)\Rightarrow (a,\,\,b)\,R\,(e,\,\,f)\]
    So, R is transitive.
    Hence, R is an equivalence relation.
    Hence proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner