12th Class Mathematics Sample Paper Mathematics Sample Paper-10

  • question_answer
    From the point P (1, 2, 4), a perpendicular is drawn on the plane \[2x+y-2z+3=0.\]
    Find the equation, the length and the coordinates of the foot of the perpendicular.
    OR
    Show that the lines
    \[\vec{r}=(-\,3\hat{i}+\hat{j}+5\hat{k})+\lambda (-\,3\hat{i}+\hat{j}+5\hat{k})\] and
    \[\vec{r}=(-\,\hat{i}+2\hat{j}+5\hat{k})+\mu (-\,\hat{i}+2\hat{j}+5\hat{k})\]                 
    are coplanar. Also, find the equation of the plane containing these lines.    

    Answer:

    Given equation of plane is
    \[2x+y-2z+3=0\]                       ?(i)
    \[\therefore \] DR's of normal to the plane are 2, 1 and \[-2\]
    Also, the given point is (1, 2, 4).        
    Let M be the foot of perpendicular drawn from P to the plane.
    So, DR's of PM is proportional to the DR's of normal to the plane, i.e.  \[2,\,\,1,\,\,-2.\] 
                                           
    Now, equation of line PM is
                \[\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-4}{-\,2}=\lambda \,\,(say)\]
                \[\left[ \text{by}\,\,\text{using}\,\,\frac{x-{{x}_{1}}}{a}=\frac{y-{{y}_{1}}}{b}=\frac{z-{{z}_{1}}}{c} \right]\]
    Then, coordinates of
    \[M=(2\lambda +1,\,\,\lambda +2,\,\,-2\lambda +4)\]                   ?(ii)
    Since, the point M lies in the plane (i).
    \[\therefore \] \[2(2\lambda +1)+(\lambda +2)-2(-\,2\lambda +4)+3=0\]
    \[\Rightarrow \]   \[4\lambda +2+\lambda +2+4\lambda -8+3=0\]
    \[\Rightarrow \]   \[9\lambda -1=0\]
    \[\Rightarrow \]   \[\lambda =\frac{1}{9}\]
    On putting the value of \[\lambda \] in Eq. (ii), we get
    Coordinates of \[M=\left( \frac{2}{9}+1,\,\,\frac{1}{9}+2,\,\,\frac{-\,2}{9}+4 \right)\]
                \[=\left( \frac{11}{9},\,\,\frac{19}{9},\,\,\frac{34}{9} \right)\]
    Now, length of perpendicular PM from point (1, 2, 4) to the plane \[2x+y-2z+3=0\] is
                \[PM=\left| \frac{2(1)+2-2(4)+3}{\sqrt{{{(2)}^{2}}+{{(1)}^{2}}+{{(-\,2)}^{2}}}} \right|\]
                \[=\left| \frac{2+2-8+3}{\sqrt{4+1+4}} \right|\]
                \[=\left| \frac{-\,1}{\sqrt{9}} \right|=\frac{1}{3}\,\,\,\text{unit}\]
    Hence, the required equation of line is
                \[\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-4}{-\,2}\]
    \[\therefore \] Length of perpendicular, \[PM=\frac{1}{3}\] unit and foot of perpendicular, \[M=\left( \frac{11}{9},\,\,\frac{19}{9},\,\,\frac{34}{9} \right)\]
    OR
    Given equation of lines are
                \[\vec{r}=(-\,3\hat{i}+\hat{j}+5\hat{k})+\lambda (-\,3\hat{i}+\hat{j}+5\hat{k})\]
    and       \[\vec{r}=(-\hat{i}+2\hat{j}+5\hat{k})+\mu (-\hat{i}+2\hat{j}+5\hat{k})\]
    On comparing with \[\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}\] and \[\vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}}\]we get           
    \[{{\vec{a}}_{1}}=-\,3\hat{i}+\hat{j}+5\hat{k},\] \[{{\vec{b}}_{1}}=-\,3\hat{i}+\hat{j}+5\hat{k}\]
    and       \[{{\vec{a}}_{2}}=-\,\hat{i}+2\hat{j}+5\hat{k},\] \[{{\vec{b}}_{2}}=-\,\hat{i}+2\hat{j}+5\hat{k}\]
    Now,     \[{{\vec{a}}_{2}}-{{\vec{a}}_{1}}=(-\,\hat{i}+2\hat{j}+5\hat{k})-(-\,3\hat{i}+j+5\hat{k})\]
                \[=2\hat{i}+\hat{j}+0\hat{k}\]
    Condition for coplanarity of two lines is
                \[({{\vec{a}}_{2}}-{{\vec{a}}_{1}})\cdot ({{\vec{b}}_{1}}\times {{\vec{b}}_{2}})=0.\]
    \[\therefore \]     
    \[\Rightarrow \] \[2(5-10)-1(-15+5)+0=0\] \[\Rightarrow \]
    \[-10+10+0=0\]
    \[\Rightarrow \]   0 = 0
    So, the given lines are coplanar.
    Now, the equation of a plane containing two lines is
    \[(\vec{r}-{{\vec{a}}_{1}})\cdot ({{\vec{b}}_{1}}\times {{\vec{b}}_{2}})=0.\]
    or \[\vec{r}\cdot ({{\vec{b}}_{1}}\times {{\vec{b}}_{2}})={{\vec{a}}_{1}}\cdot ({{\vec{b}}_{1}}\times {{\vec{b}}_{2}})\]
    Here,
                \[=\hat{i}(5-10)-\hat{j}(-15+5)+\hat{k}(-\,6+1)\]
                \[=-\,5\hat{i}+10\hat{j}-5\hat{k}=5(-\hat{i}+2\hat{j}-k)\]
    \[\therefore \] Required equation of the plane is
    \[\vec{r}\cdot 5(-\,i+2\hat{j}-\hat{k})=(-\,3\hat{i}+\hat{j}+5\hat{k})\]
                            \[\cdot [5(-\,\hat{i}+2\hat{j}-\hat{k})]\] 
    \[\Rightarrow \]   \[\vec{r}\cdot 5(-i+2\hat{j}-\hat{k})=5(3+2-5)\]
    \[\Rightarrow \]   \[\vec{r}\cdot (-i+2\hat{j}-\hat{k})=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner