11th Class Mathematics Sample Paper Mathematics Olympiad - Sample Paper-1

  • question_answer 10) \[\underset{h\to 0}{\mathop{Lt}}\,\frac{\mathbf{sin}\sqrt{\mathbf{x}+\mathbf{h}}-\mathbf{sin}\sqrt{\mathbf{x}}}{h}\] is equal to

    A) \[\frac{\cos \sqrt{x}}{2\sqrt{x}}\]                                   

    B) \[\sin \sqrt{x}\]         

    C) \[cos\sqrt{x}\]                           

    D)  \[\frac{1}{2}sin\sqrt{x}\]

    Correct Answer: A

    Solution :

    [a] \[\because \underset{h\to 0}{\mathop{\lim }}\,\sin \frac{\sqrt{x+h}-\sin \sqrt{x}}{h}\] \[\underset{h\to 0}{\mathop{\lim }}\,\frac{2.\cos \frac{\sqrt{x+h}+\sqrt{x}}{2}.\sin \frac{\sqrt{x+h}-\sqrt{x}}{2}}{x+h-x}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{2.\cos \frac{\sqrt{x+h}+\sqrt{x}}{2}.\sin \frac{\sqrt{x+h}-\sqrt{x}}{2}}{\left( \sqrt{x+h}+\sqrt{x} \right)\left( \sqrt{x+h}-\sqrt{x} \right)}\] \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{2.\cos \sqrt{x+h}+\sqrt{x}}{2}\times \frac{\frac{\sqrt{x+h}-\sqrt{x}}{2}}{\frac{\sqrt{x+h}-\sqrt{x}}{2}}\times \frac{1}{2\left[ \sqrt{x+h}+\sqrt{x} \right]}\]\[=\underset{h\to 0}{\mathop{\lim }}\,2.\cos \frac{\left( \sqrt{x+h}+\sqrt{x} \right)}{2}\times \frac{1}{2\left[ \sqrt{x+h}+\sqrt{x} \right]}\] \[=2\left( \frac{\cos 2\sqrt{x}}{2} \right)\times \frac{1}{2(2\sqrt{x})}=\frac{\cos \sqrt{x}}{2\sqrt{x}}\]

adversite



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos