JEE Main & Advanced Sample Paper JEE Main Sample Paper-46

  • question_answer
    Let [.] represents the greatest integer function and \[f(x)=[{{\tan }^{2}}x],\] then

    A)  \[\underset{x\to 0}{\mathop{\lim }}\,\,f(x)\]does not exist                   

    B)  \[f(x)\] is continuous at \[x=0\]

    C)  \[f(x)\] is non-differentiable at \[x=0\]

    D)  \[f(0)=1\]

    Correct Answer: B

    Solution :

     We have, \[Lf'(0)=\,\underset{h\to \infty }{\mathop{\lim }}\,\,\frac{f(0-h)\,-f(0)}{-h}\] \[=\,\underset{h\to \infty }{\mathop{\lim }}\,\,\frac{[{{\tan }^{2}}(-h)]-(0)}{-h}\] \[=\,\underset{h\to \infty }{\mathop{\lim }}\,\,\frac{[{{\tan }^{2}}h]}{-h}=0\] \[Rf'(0)=\underset{h\to \infty }{\mathop{\lim }}\,\,\frac{f(0+h)-f(0)}{h}\] \[=\underset{h\to \infty }{\mathop{\lim }}\,\,\frac{[{{\tan }^{2}}h]-0}{h}=0\] \[\therefore \]    \[Lf'(0)=Rf'(0)\] Hence, \[f(x)\] is differentiable and hence continuous at \[x=0,\] then \[f'(0)=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner