A) \[\frac{{{d}_{2}}+{{d}_{2}}}{2}\] done clear
B) \[\sqrt{{{d}_{1}}{{d}_{2}}}\] done clear
C) \[\sqrt{\frac{{{d}_{1}}{{d}_{2}}}{2}}\] done clear
D) \[\sqrt{\frac{{{d}_{2}}+{{d}_{2}}}{2}}\] done clear
View Solution play_arrowquestion_answer2) Which of the following is true (\[\mu =\] Poisson's ratio):
A) \[0<\mu <-\text{1/2}\] done clear
B) \[1<\mu <0\] done clear
C) \[1<\mu <-1\] done clear
D) \[\infty <\mu <-\infty \] done clear
View Solution play_arrowA) Presence of flaws and microscopic cracks or cavities done clear
B) Necking in tension done clear
C) Severity of tensile stress as compared to compressive stress done clear
D) non-linearity of stress-strain diagram. done clear
View Solution play_arrowA) \[\frac{T}{2}\] done clear
B) T done clear
C) 2T done clear
D) 4T done clear
View Solution play_arrowA) M+T done clear
B) \[\sqrt{{{M}^{2}}+{{T}^{2}}}\] done clear
C) \[\frac{1}{2}\sqrt{{{M}^{2}}+{{T}^{2}}}\] done clear
D) \[\frac{1}{2}\left( m+\sqrt{{{M}^{2}}+{{T}^{2}}} \right)\] done clear
View Solution play_arrowA) k/4 done clear
B) k/2 done clear
C) 2k done clear
D) 4k done clear
View Solution play_arrowA) \[\frac{\sigma }{2}\,\sin 2\theta \] done clear
B) \[\frac{\sigma }{2}\,\cos 2\theta \] done clear
C) \[\frac{\sigma }{2}\,{{\cos }^{2}}\theta \] done clear
D) \[\frac{\sigma }{2}\,{{\sin }^{2}}\theta \] done clear
View Solution play_arrowquestion_answer8) Select the proper sequence
1. Proportional Limit |
2. Elastic limit |
3. Yielding |
4. Failure |
A) 2, 3, 1, 4 done clear
B) 2, 1, 3, 4 done clear
C) 1, 3, 2, 4 done clear
D) 1, 2, 3, 4 done clear
View Solution play_arrowquestion_answer9) The relationship between constants E. G and K given by:
A) \[E=\frac{G+3K}{9KG}\] done clear
B) \[E=\frac{3G+K}{9KG}\] done clear
C) \[E=\frac{9KG}{G+3K}\] done clear
D) \[E=\frac{9KG}{3G+K}\] done clear
View Solution play_arrowquestion_answer10) For the two shafts in parallel, find which statements is true?
A) Torque in each shaft is the same done clear
B) Shear stress in each shaft is the same done clear
C) Angle of twist of each shaft is the same done clear
D) Torsional stiffness of each shaft is the same done clear
View Solution play_arrowA) \[W+wL\] done clear
B) \[W+w\,(L-y)\] done clear
C) \[(W+w)\,\text{y/L}\] done clear
D) \[W+\frac{W}{w}(L-y)\] done clear
View Solution play_arrowA) The sum of the normal stresses done clear
B) Difference of the normal stresses done clear
C) Half the sum of the normal stresses done clear
D) Half the difference of the normal stresses done clear
View Solution play_arrowquestion_answer13) The temperature stress is a function of
1. Coefficient of linear expansion |
2. Temperature rise |
3. Modulus of elasticity |
A) 1 and 2 only done clear
B) 1 and 3 only done clear
C) 2 and 3 only done clear
D) 1, 2 and 3 done clear
View Solution play_arrow1. Angle of twist in both the springs will be equal |
2. Deflection of both the springs will be equal |
3. Load taken by each spring will be half the total load |
4. Shear stress in each spring will be equal |
A) 1 and 2 only done clear
B) 2 and 3 only done clear
C) 2 and 4 only done clear
D) 1, 2 and 4 only done clear
View Solution play_arrowA) Length done clear
B) cross-section done clear
C) Volume done clear
D) none of the above done clear
View Solution play_arrowA) 0 done clear
B) \[500\,k\text{g/c}{{\text{m}}^{\text{2}}}\] done clear
C) \[707\,k\text{g/c}{{\text{m}}^{\text{2}}}\] done clear
D) \[1000\,k\text{g/c}{{\text{m}}^{\text{2}}}\] done clear
View Solution play_arrowA) \[4K\] done clear
B) \[2K\] done clear
C) \[\frac{K}{2}\] done clear
D) \[\frac{K}{4}\] done clear
View Solution play_arrowA) 0.05 cm done clear
B) 0.1 cm done clear
C) 0.15 cm done clear
D) 0.20 cm done clear
View Solution play_arrowA) One-fourth of its original value done clear
B) Halved done clear
C) Doubled done clear
D) Unaffected done clear
View Solution play_arrowList-I | List-II | ||
A. | Ductility | 1. | Impac test |
B. | Toughness | 2. | Fatigue test |
C. | Endurance limit | 3. | Tension test |
D. | Resistance to penetration | 4. | Hardness test |
A) A\[\to \]3, B\[\to \]2, C\[\to \]1, D\[\to \]4 done clear
B) A\[\to \]4, B\[\to \]2, C\[\to \]1, D\[\to \]3 done clear
C) A\[\to \]3, B\[\to \]1, C\[\to \]2, D\[\to \]4 done clear
D) A\[\to \]4, B\[\to \]1, C\[\to \]2, D\[\to \]3 done clear
View Solution play_arrowA) 0.26 done clear
B) 0.31 done clear
C) 0.47 done clear
D) 05 done clear
View Solution play_arrowA) 2 done clear
B) 4 done clear
C) 8 done clear
D) 16 done clear
View Solution play_arrowList-II (Condition of beam) | List-II (Bending moment diagram) | ||
A. | Subjected to bending moment at the end of a cantilever. | 1. | Triangle |
B. | Cantilever carrying uniformly distributed load over the whole length | 2. | Cubic parabola |
C. | Cantilever carrying linearly varying load from zero at the fixed end to maximum at the support. | 3. | Parabola |
D. | A beam having load at the centre and supported at the ends | 4. | Rectangle |
A) A\[\to \]4, B\[\to \]1, C\[\to \]2, D\[\to \]3 done clear
B) A\[\to \]4, B\[\to \]3, C\[\to \]2, D\[\to \]1 done clear
C) A\[\to \]3, B\[\to \]4, C\[\to \]2, D\[\to \]1 done clear
D) A\[\to \]3, B\[\to \]4, C\[\to \]1, D\[\to \]2 done clear
View Solution play_arrowA) One done clear
B) Two done clear
C) Three done clear
D) Four done clear
View Solution play_arrowA) 0.44 \[\delta \] done clear
B) 0.67 \[\delta \] done clear
C) 1.5 \[\delta \] done clear
D) 2.25 \[\delta \] done clear
View Solution play_arrowA) 0.25 done clear
B) 0.50 done clear
C) 2.0 done clear
D) 4.0 done clear
View Solution play_arrowA) \[\frac{1}{\sqrt{2}}\sigma \] done clear
B) \[\sigma \] done clear
C) \[\sqrt{2\sigma }\] done clear
D) \[2\sigma \] done clear
View Solution play_arrowA) Toughness done clear
B) impact strength done clear
C) Ductility done clear
D) resilience done clear
View Solution play_arrowquestion_answer29) In the assembly of pulley, key and shaft:
A) Pulley is made the weakest done clear
B) Key is made the weakest done clear
C) Key is made the strongest done clear
D) All the three are designed for equal strength done clear
View Solution play_arrowA) \[{{\varepsilon }_{1}}+2{{\varepsilon }_{2}}\] done clear
B) \[{{\varepsilon }_{1}}+{{\varepsilon }_{2}}^{2}\] done clear
C) \[2{{\varepsilon }_{1}}+{{\varepsilon }_{2}}\] done clear
D) \[{{\varepsilon }_{1}}^{2}+{{\varepsilon }_{2}}\] done clear
View Solution play_arrowA) 5 mm done clear
B) 10 mm done clear
C) 20 mm done clear
D) 25 mm done clear
View Solution play_arrowA) k done clear
B) 1.25 k done clear
C) 1.56 k done clear
D) 1.95 k done clear
View Solution play_arrowquestion_answer33) The buckling load will he maximum for a column, if:
A) One end of the column is clamped and the other end is free done clear
B) Both ends of the column are clamped done clear
C) Both ends of the column are hinged done clear
D) One end of the column is hinged and the other end is free done clear
View Solution play_arrowA) \[({{\sigma }_{1}}+{{\sigma }_{2}})/2=\pm \,{{\sigma }_{yp}}/2\] done clear
B) \[{{\sigma }_{1}}/2=\pm \,{{\sigma }_{yp}}/2\] done clear
C) \[{{\sigma }_{2}}/2=\pm \,{{\sigma }_{yp}}/2\] done clear
D) \[{{\sigma }_{1}}=\pm \,{{\sigma }_{yp}}\] done clear
View Solution play_arrowquestion_answer35) A state of pure shear m a biaxial stress is gives by:
A) \[\left[ \begin{matrix} {{\sigma }_{1}} & {{\sigma }_{1}} \\ 0 & {{\sigma }_{2}} \\ \end{matrix} \right]\] done clear
B) \[\left[ \begin{matrix} {{\sigma }_{1}} & 0 \\ 0 & -{{\sigma }_{2}} \\ \end{matrix} \right]\] done clear
C) \[\left[ \begin{matrix} {{\sigma }_{x}} & {{\tau }_{xy}} \\ 0 & -{{\sigma }_{Y}} \\ \end{matrix} \right]\] done clear
D) none of the above done clear
View Solution play_arrowA) 1 done clear
B) 2 done clear
C) 3 done clear
D) 4 done clear
View Solution play_arrowA) The diameter of the Mohr's circle done clear
B) Half the diameter of the Mohr's circle done clear
C) One-third the diameter of the Mohr's circle done clear
D) One-fourth the diameter of the Mohr's circle done clear
View Solution play_arrowquestion_answer38) If the value of Poisson's ratio is zero, then it means that:
A) The material is rigid done clear
B) There is no longitudinal strain in the material done clear
C) The material is perfectly plastic done clear
D) The longitudinal strain in the material is infinite done clear
View Solution play_arrowA) The same done clear
B) One-fourth done clear
C) Half done clear
D) Double done clear
View Solution play_arrowA) Equal to 0.1 m done clear
B) Between 0.1 and 0.2 done clear
C) Equal to 0.2 m done clear
D) More than 0.2 m done clear
View Solution play_arrowA) 16/81 done clear
B) 8/27 done clear
C) 19/27 done clear
D) 243/256 done clear
View Solution play_arrowA) \[1.067\,\tau \] done clear
B) \[1.143\,\tau \] done clear
C) \[1.333\,\tau \] done clear
D) \[2\,\tau \] done clear
View Solution play_arrowA) 1 kNm done clear
B) 2 kNm done clear
C) 3 kNm done clear
D) 4 kNm done clear
View Solution play_arrowA) 9 mm done clear
B) 11 mm done clear
C) 17 mm done clear
D) 21 mm done clear
View Solution play_arrow1. Tensile hoop stress |
2. Tensile radial stress |
3. Compressive hoop stress |
4. Compressive radial stress |
A) 1 alone done clear
B) 1 and 3 done clear
C) 1, 2 and 4 done clear
D) 2, 3 and 4 done clear
View Solution play_arrowA) \[36\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] Compression done clear
B) \[36\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] Tension done clear
C) \[72\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] Compression done clear
D) \[72\,\text{kgf/c}{{\text{m}}^{\text{2}}}\]Tension done clear
View Solution play_arrowA) It is subjected to a higher stress flan the outer side done clear
B) it is subjected to a higher cyclic loading than the outer side done clear
C) It is more stretched than the outer side during the manufacturing process done clear
D) It has a lower curvature than the outer side done clear
View Solution play_arrowA) \[\frac{P}{2}\] done clear
B) \[\frac{P}{3}\] done clear
C) \[\frac{P}{1.088}\] done clear
D) \[\frac{P}{2.088}\] done clear
View Solution play_arrowquestion_answer49) Rankine-Gordon formula for buckling is valid for:
A) Long column done clear
B) Short column done clear
C) Short and long column done clear
D) Very long column done clear
View Solution play_arrowA) Tensile strength done clear
B) Compressive strength done clear
C) Half the difference between the tensile and compressive strengths done clear
D) Half the tensile strength done clear
View Solution play_arrowA) 2.5 done clear
B) 2.8 done clear
C) 3.0 done clear
D) 3.5 done clear
View Solution play_arrowA) \[{{({{\sigma }_{1}}-{{\sigma }_{2}})}^{2}}+{{({{\sigma }_{2}}-{{\sigma }_{3}})}^{2}}+{{({{\sigma }_{3}}-\sigma )}^{2}}=2s_{y}^{2}\] done clear
B) \[({{\sigma }_{1}}^{2}+{{\sigma }_{2}}+{{\sigma }_{3}})-2v({{\sigma }_{1}}{{\sigma }_{2}}+{{\sigma }_{2}}{{\sigma }_{3}}+{{\sigma }_{3}}{{\sigma }_{1}})=\sigma _{y}^{2}\] done clear
C) \[({{\sigma }_{1}}+{{\sigma }_{2}}^{2})+{{({{\sigma }_{2}}-{{\sigma }_{3}})}^{2}}+{{({{\sigma }_{3}}-{{\sigma }_{1}})}^{2}}=3{{\sigma }_{y}}^{2}\] done clear
D) \[(1-2v){{({{\sigma }_{1}}+{{\sigma }_{2}}+{{\sigma }_{3}})}^{2}}=2(1+v){{\sigma }_{y}}\] done clear
View Solution play_arrowA) \[0.425\times {{10}^{-\,3}}\] done clear
B) \[0.5\times {{10}^{-\,3}}\] done clear
C) \[0.585\times {{10}^{-\,3}}\] done clear
D) \[0.75\times {{10}^{-\,3}}\] done clear
View Solution play_arrowA) \[\text{Pl/4}\,E{{d}_{1}}{{d}_{2}}\] done clear
B) \[\text{Pl}\,\pi \,E{{d}_{1}}{{d}_{2}}\] done clear
C) \[\text{Pl/4}E({{d}_{1}}.{{d}_{2}})\] done clear
D) \[\text{4P}\text{.l/}\pi \text{.}E.{{d}_{1}}.{{d}_{2}}\] done clear
View Solution play_arrowA) \[1/2\delta \] done clear
B) \[\delta \] done clear
C) \[2\delta \] done clear
D) \[4\delta \] done clear
View Solution play_arrowA) Three times its shear modulus done clear
B) Four times its shear modulus done clear
C) Equal to its shear modulus done clear
D) Indeterminate. done clear
View Solution play_arrowA) \[50\,\text{N/m}{{\text{m}}^{\text{2}}}\] done clear
B) \[57.7\,\text{N/m}{{\text{m}}^{\text{2}}}\] done clear
C) \[86.6\,\text{N/m}{{\text{m}}^{\text{2}}}\] done clear
D) \[100\,\text{N/m}{{\text{m}}^{\text{2}}}\] done clear
View Solution play_arrowA) T/4 done clear
B) T/8 done clear
C) T/12 done clear
D) T/16 done clear
View Solution play_arrowA) \[M\] done clear
B) \[\sqrt{M}\] done clear
C) \[{{M}_{2}}\] done clear
D) \[\text{1/M}\] done clear
View Solution play_arrowquestion_answer60) Consider the following statements:
If at section distant from one of the ends of the beam, M represents the bending moment, V the shear force and w the intensity of loading, then |
1. dM/dx = V |
2. dV/dx = w |
3. dw/dx = y (the deflection of the beam at the section) |
Of these statements: |
A) 1 and 3 are correct done clear
B) 1 and 2 are correct done clear
C) 2 and 3 are correct done clear
D) 1, 2 and 3 are correct done clear
View Solution play_arrowA) 25 T concentrated load at free end. done clear
B) 20 T concentrated load at free end. done clear
C) 5 T concentrated load at free end and 2 T/m load over entire length. done clear
D) 10 T/mudl over entire length done clear
View Solution play_arrowquestion_answer62) Consider the following statements:
State of stress in two dimensions at a point in a loaded component can be completely specified by indicating the normal and shear stresses on |
1. A plane containing the point |
2. Any two planes passing through the point |
3. Two mutually perpendicular planes passing through the point |
A) 1 and 3 are correct done clear
B) 2 alone is correct done clear
C) 1 alone is correct done clear
D) 3 alone is correct done clear
View Solution play_arrowA) Yield strength done clear
B) Proportional limit done clear
C) Elastic limit done clear
D) Tensile strength done clear
View Solution play_arrowA) 2 : 1 done clear
B) \[\sqrt{2}:1\] done clear
C) 1.6 : 1 done clear
D) 1 : 2 done clear
View Solution play_arrowList-I (End conditions of columns) | List-II (Lowest critical load) | ||
A. | Column with both ends hinged | 1. | \[({{\pi }^{2}}El)/{{L}^{2}}\] |
B. | Column with both ends fixed | 2. | \[(2{{\pi }^{2}}El)/{{L}^{2}}\] |
C. | Column with one end fixed and the other end hinged | 3. | \[({{\pi }^{2}}El)/{{L}^{2}}\] |
D. | Column with one end fixed and the other end free | 4. | \[({{\pi }^{2}}El)/4{{L}^{2}}\] |
A) A\[\to \]1, B\[\to \]2, C\[\to \]3, D\[\to \]4 done clear
B) A\[\to \]3, B\[\to \]2, C\[\to \]1, D\[\to \]4 done clear
C) A\[\to \]1, B\[\to \]3, C\[\to \]2, D\[\to \]4 done clear
D) A\[\to \]2, B\[\to \]4, C\[\to \]3, D\[\to \]1 done clear
View Solution play_arrowA) \[5<\frac{1}{k}<8\] done clear
B) \[9<\frac{1}{k}<8\] done clear
C) \[19<\frac{1}{k}<40\] done clear
D) \[\frac{1}{k}\ge 80\] done clear
View Solution play_arrowA) 1/2 done clear
B) 1 done clear
C) 2 done clear
D) 4 done clear
View Solution play_arrowA) \[\text{1/2}\,\tau \] done clear
B) \[\tau \] done clear
C) \[\text{2}\,\tau \] done clear
D) \[\text{4}\,\tau \] done clear
View Solution play_arrowA) \[3\,\sigma \] done clear
B) \[2\,\sigma \] done clear
C) \[\sigma \] done clear
D) Zero done clear
View Solution play_arrowA) 1/2M done clear
B) M done clear
C) \[\sqrt{M}\] done clear
D) 2M done clear
View Solution play_arrowA) 6 kN/m done clear
B) 12 kN/m done clear
C) 24 kN/m done clear
D) 30 kN/m done clear
View Solution play_arrowquestion_answer72) Consider the following statements.
State of stress at a point when completely specified, enables one to determine the |
1. Principal stresses at the point. |
2. Maximum shearing stress at the point |
3. Stress components on any arbitrary plane containing the point |
A) 1, 2 and 3 are correct done clear
B) 1 and 3 are correct done clear
C) 2 and 3 are correct done clear
D) 1 and 2 are correct done clear
View Solution play_arrowList-I | List-II | ||
A. | Both ends hinged | 1. | L |
B. | One end fixed and other end free | 2. | \[L\,/\sqrt{2}\] |
C. | One end fixed and the other pin-jointed | 3. | \[\frac{L}{2}\] |
D. | Both ends fixed | 4. | 2L |
A) A\[\to \]1, B\[\to \]4, C\[\to \]3, D\[\to \]2 done clear
B) A\[\to \]1, B\[\to \]4, C\[\to \]2, D\[\to \]3 done clear
C) A\[\to \]3, B\[\to \]1, C\[\to \]2, D\[\to \]4 done clear
D) A\[\to \]3, B\[\to \]1, C\[\to \]4, D\[\to \]2 done clear
View Solution play_arrowA) 1/16 done clear
B) 1/8 done clear
C) 1/4 done clear
D) 1/2 done clear
View Solution play_arrowA) \[WL\] done clear
B) \[\frac{WL}{2}\] done clear
C) \[\frac{WL}{4}\] done clear
D) \[\frac{WL}{8}\] done clear
View Solution play_arrowList-I | List-II | ||
A. | Bending moment is constant | 1. | Point of contra-flexure |
B. | Bending moment is maximum or minimum | 2. | Shear force changes sign |
C. | Bending moment is zero | 3. | Slope of shear force diagram is zero over the portion of the beam |
D. | Loading is constant | 4. | Shear force is zero over the portion of the beam. |
A) A\[\to \]4, B\[\to \]1, C\[\to \]2, D\[\to \]3 done clear
B) A\[\to \]1, B\[\to \]4, C\[\to \]2, D\[\to \]3 done clear
C) A\[\to \]3, B\[\to \]1, C\[\to \]2, D\[\to \]4 done clear
D) A\[\to \]3, B\[\to \]1, C\[\to \]4, D\[\to \]2 done clear
View Solution play_arrowA) Simply supported beam with a concentrated load at the centre done clear
B) Overhung beam having equal overhang at both supports and carrying equal concentrated loads acting in the same direction at the free ends done clear
C) Cantilever subjected to concentrated load at the free end done clear
D) Simply supported beam having concentrated loads of equal magnitude and in the same direction acting at equal distances from the supports done clear
View Solution play_arrowA) 3/8 done clear
B) 8/3 done clear
C) 5/8 done clear
D) 8/5 done clear
View Solution play_arrowA) \[3.44\times {{10}^{-\,4}}\] done clear
B) \[3.84\times {{10}^{-\,4}}\] done clear
C) \[4\times {{10}^{-\,4}}\] done clear
D) \[4.56\times {{10}^{-\,4}}\] done clear
View Solution play_arrowList-I | List-II | ||
A. | maximum bending moment | 1. | WL |
B. | Strain energy | 2. | \[\text{W}{{\text{L}}^{\text{2}}}\text{/2EI}\] |
C. | Maximum slope | 3. | \[\text{W}{{\text{L}}^{3}}\text{/2EI}\] |
D. | Maximum deflection | 4. | \[{{\text{W}}^{2}}{{\text{L}}^{2}}\text{/6EI}\] |
A) A\[\to \]1, B\[\to \]4, C\[\to \]3, D\[\to \]2 done clear
B) A\[\to \]1, B\[\to \]4, C\[\to \]2, D\[\to \]3 done clear
C) A\[\to \]4, B\[\to \]2, C\[\to \]1, D\[\to \]3 done clear
D) A\[\to \]4, B\[\to \]2, C\[\to \]1, D\[\to \]2 done clear
View Solution play_arrowA) \[Slop,\,\,{{Q}_{x}}=\frac{Mx}{Vx}\] done clear
B) \[{{V}_{x}}=\frac{dMx}{dx}\] done clear
C) \[{{W}_{x}}=\frac{{{d}^{2}}Mx}{d{{x}^{2}}}\] done clear
D) \[{{W}_{x}}=\frac{d{{V}_{x}}}{dx}\] done clear
View Solution play_arrowA) \[\sqrt{{{M}^{2}}+{{T}^{2}}}\] done clear
B) \[\frac{1}{2}\,\sqrt{{{M}^{2}}+{{T}^{2}}}\] done clear
C) \[\frac{1}{2}\,\sqrt{{{M}^{3}}+{{T}^{2}}}\] done clear
D) \[\frac{1}{2}\,\left( M+\sqrt{{{M}^{3}}+{{T}^{2}}} \right)\] done clear
View Solution play_arrowA) M/l done clear
B) M/2l done clear
C) M/4l done clear
D) none of the above done clear
View Solution play_arrowA) \[u/r\] done clear
B) \[u/\theta \] done clear
C) \[du/dr\] done clear
D) \[du/d\theta \] done clear
View Solution play_arrowquestion_answer85) Auto-frettage is the method of:
A) Joining thick cylinders done clear
B) Calculating stresses in thick cylinders done clear
C) Prestressing thick cylinders done clear
D) Increasing the life of thick cylinders done clear
View Solution play_arrowd = diameter of spring. |
R = mean radius of coils. |
n = number of coils, and |
G = modulus of rigidity. |
A) \[\frac{G{{d}^{4}}}{64{{R}^{3}}n}\] done clear
B) \[\frac{G{{d}^{3}}}{64{{R}^{3}}n}\] done clear
C) \[\frac{G{{d}^{4}}}{32{{R}^{3}}n}\] done clear
D) \[\frac{G{{d}^{4}}}{64{{R}^{3}}n}\] done clear
View Solution play_arrowA) Bending stress only done clear
B) Direct shear stress only done clear
C) A combination of torsional shear stress and bending stress done clear
D) A combination of bending stress and direct shear stress done clear
View Solution play_arrowA) Maximum principal stress theory done clear
B) Maximum shear stress theory done clear
C) Maximum strain energy theory done clear
D) Maximum distortion energy theory done clear
View Solution play_arrowA) True stress and true strain done clear
B) Poisson's ratio and Young's modulus done clear
C) Engineering stress and engineering strain done clear
D) Load and elongation done clear
View Solution play_arrowquestion_answer90) The state of plane stress in a plate of 100 mm thickness is given as
\[{{\sigma }_{xx}}=100\,\text{N/m}{{\text{m}}^{\text{2}}}\text{,}\] \[{{\sigma }_{xy}}=200\,\text{N/m}{{\text{m}}^{\text{2}}}\] |
Young's modulus \[=300\,\text{N/m}{{\text{m}}^{\text{2}}}\] |
Poission?s ratio = 0.3 |
A) zero done clear
B) \[90\text{ }N/m{{m}^{2}}\] done clear
C) \[100\text{ }N/m{{m}^{2}}\] done clear
D) \[200\text{ }N/m{{m}^{2}}\] done clear
View Solution play_arrowA) \[50\sqrt{3}\,\text{kgf}\,\,\text{c}{{\text{m}}^{\text{2}}}\] done clear
B) \[100\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] done clear
C) \[50\sqrt{5}\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] done clear
D) \[150\,\text{kgf/c}{{\text{m}}^{\text{2}}}\] done clear
View Solution play_arrowList-I | List-II | ||
A. | Young's modulus | 1. | Shear strain |
B. | Modulus of rigidity | 2. | Normal strain |
C. | Bulk modulus | 3. | Transverse strain |
D. | Poisson's ratio | 4. | Volumetric strain |
A) A\[\to \]2, B\[\to \]1, C\[\to \]3, D\[\to \]4 done clear
B) A\[\to \]2, B\[\to \]1, C\[\to \]4, D\[\to \]3 done clear
C) A\[\to \]3, B\[\to \]4, C\[\to \]1, D\[\to \]2 done clear
D) A\[\to \]4, B\[\to \]3, C\[\to \]1, D\[\to \]2 done clear
View Solution play_arrowA) \[\lambda =\frac{Ev}{(1+v)(1-2y)}\] done clear
B) \[\lambda =\frac{Ev}{(1+2v)(1-v)}\] done clear
C) \[\lambda =\frac{Ev}{(1+v)}\] done clear
D) \[\lambda =\frac{Ev}{(1-v)}\] done clear
View Solution play_arrowA) \[6\times {{10}^{-\,10}}\,\text{kg/c}{{\text{m}}^{\text{2}}}\] done clear
B) \[6\times {{10}^{-\,10}}\,\text{kg/c}{{\text{m}}^{\text{2}}}\] done clear
C) \[2.4\times {{10}^{3}}\,\text{kg/c}{{\text{m}}^{\text{2}}}\] done clear
D) \[2.4\times {{10}^{4}}\,\text{kg/c}{{\text{m}}^{\text{2}}}\] done clear
View Solution play_arrowA) 3 done clear
B) 4 done clear
C) 21 done clear
D) 25 done clear
View Solution play_arrowA) \[M=wL/2(L-x)-W/2(L-x)N.m\] done clear
B) \[M=wL/2x-w{{x}^{2}}/2-N.m\] done clear
C) \[M=wL/2{{(L-x)}^{2}}-w/2(L-x)N.m\] done clear
D) \[M=w{{x}^{2}}/2-wLx/2N.m\] done clear
View Solution play_arrowA) Also have a constant value everywhere along its length done clear
B) Be zero at all sections along the beam done clear
C) Be maximum at the centre and zero at the ends done clear
D) Zero at the centre and maximum at the ends done clear
View Solution play_arrowA) \[\frac{d}{b}\delta \] done clear
B) \[{{\left( \frac{d}{b} \right)}^{2}}\delta \] done clear
C) \[{{\left( \frac{d}{b} \right)}^{3}}\delta \] done clear
D) \[{{\left( \frac{d}{b} \right)}^{3/2}}\delta \] done clear
View Solution play_arrowA) \[{{W}_{1}}+{{W}_{2}}=W\] done clear
B) \[{{W}_{1}}+{{W}_{2}}=\text{constant}\] done clear
C) \[\frac{{{W}_{1}}}{{{A}_{1}}{{E}_{1}}}=\frac{{{W}_{2}}}{{{A}_{2}}{{E}_{2}}}\] done clear
D) \[\frac{{{W}_{2}}}{{{A}_{2}}{{E}_{1}}}=\frac{{{W}_{2}}}{{{A}_{1}}{{E}_{2}}}\] done clear
View Solution play_arrowA) \[6000\,\,\text{N/m}{{\text{m}}^{\text{2}}}\](Tensile) done clear
B) \[6000\,\,\text{N/m}{{\text{m}}^{\text{2}}}\](Compressive) done clear
C) \[2000\,\,\text{N/m}{{\text{m}}^{\text{2}}}\](Tensile) done clear
D) \[2000\,\,\text{N/m}{{\text{m}}^{\text{2}}}\](Compressive) done clear
View Solution play_arrowA) Zero done clear
B) \[40\,\,kgf\text{/c}{{\text{m}}^{\text{2}}}\] done clear
C) \[60\,\,kgf\text{/c}{{\text{m}}^{\text{2}}}\] done clear
D) \[80\,\,kgf\text{/c}{{\text{m}}^{\text{2}}}\] done clear
View Solution play_arrowA) Both beams will be equally strong done clear
B) Circular section beam will be stronger done clear
C) Square section beam will be stronger done clear
D) The strength of the beam will depend on the nature of loading done clear
View Solution play_arrowA) Half done clear
B) One-eighth done clear
C) One-sixteenth done clear
D) Double done clear
View Solution play_arrowA) 2 : 1 done clear
B) 4 : 1 done clear
C) 8 : 1 done clear
D) 16 : 1 done clear
View Solution play_arrowA) \[\frac{16}{15}\tau \] done clear
B) \[\frac{8}{7}\tau \] done clear
C) \[\frac{4}{3}\tau \] done clear
D) \[\tau \] done clear
View Solution play_arrowA) Are cost effective in fabrication done clear
B) Have uniform higher circumferential stress done clear
C) Uniform lower circumferential stress done clear
D) Have a larger volume for the same quantity of material used done clear
View Solution play_arrowA) 1 : 1 done clear
B) 1 : 2 done clear
C) 2 : 1 done clear
D) 2 : 3 done clear
View Solution play_arrowA) \[\frac{ML}{EI}\] done clear
B) \[\frac{ML}{2EI}\] done clear
C) \[\frac{{{M}^{2}}L}{EI}\] done clear
D) \[\frac{{{M}^{2}}L}{2EI}\] done clear
View Solution play_arrowA) 1 done clear
B) 2 done clear
C) 3 done clear
D) 4 done clear
View Solution play_arrowquestion_answer110) A cylindrical vessel with flat bottom can be deep drawn by:
A) Shallow drawing done clear
B) Single action deep drawing done clear
C) Double action deep drawing done clear
D) Triple action deep drawing. done clear
View Solution play_arrowA) \[\frac{d+D}{8}\] done clear
B) \[\frac{{{d}^{2}}+{{D}^{2}}}{8d}\] done clear
C) \[\frac{{{d}^{2}}+{{D}^{2}}}{8d}\] done clear
D) \[\sqrt{\frac{{{d}^{2}}+{{D}^{2}}}{8}}\] done clear
View Solution play_arrowA) \[\frac{{{P}^{2}}L}{2AE}\] done clear
B) \[\frac{P{{L}^{2}}}{2EI}\] done clear
C) \[\frac{P{{L}^{2}}}{AE}\] done clear
D) \[\frac{{{P}^{2}}L}{AE}\] done clear
View Solution play_arrowA) Tensile, compressive and tensile respectively done clear
B) All compressive done clear
C) All tensile done clear
D) Tensile, compressive and compressive respectively. done clear
View Solution play_arrowA) \[2{{\sigma }_{0}}\] done clear
B) \[1,5{{\sigma }_{0}}\] done clear
C) \[{{\sigma }_{0}}\] done clear
D) \[0.5{{\sigma }_{0}}\] done clear
View Solution play_arrowA) Outermost fibres done clear
B) Fibres at mean diameter done clear
C) Innermost fibres done clear
D) End coils done clear
View Solution play_arrowA) \[\frac{1}{5}\] done clear
B) \[\frac{3}{4}\] done clear
C) \[\frac{9}{5}\] done clear
D) \[\frac{11}{6}\] done clear
View Solution play_arrowA) T/2 done clear
B) T done clear
C) \[\sqrt{2T}\] done clear
D) 2T done clear
View Solution play_arrowA) \[\sigma \] done clear
B) \[\sqrt{2\sigma }\] done clear
C) \[\sqrt{3\sigma }\] done clear
D) \[2\sigma \] done clear
View Solution play_arrowquestion_answer119) Consider the following statements:
State of stress in two dimensions at a point in a component can be completely specified by indicating the normal and shear stresses on |
1. A plane containing the point |
2. Any two planes passing through the point |
3. Two mutually perpendicular planes passing through the point |
A) 1 and 3 are correct done clear
B) 2 alone is correct done clear
C) 1 alone is correct done clear
D) 3 alone is correct done clear
View Solution play_arrowA) \[{{W}_{1}}+{{W}_{2}}=W\] done clear
B) \[{{W}_{1}}+{{W}_{2}}=\text{constant}\] done clear
C) \[\frac{{{W}_{1}}}{{{A}_{1}}{{E}_{1}}}=\frac{{{W}_{2}}}{{{A}_{2}}{{E}_{2}}}\] done clear
D) \[\frac{{{W}_{2}}}{{{A}_{2}}{{E}_{1}}}=\frac{{{W}_{2}}}{{{A}_{1}}{{E}_{2}}}\] done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec