JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Expansion of determinants, Solution of equation in the form of determinants and properties of determinants

  • question_answer
    If a, b, c are all different and \[\left| \,\begin{matrix}    a & {{a}^{3}} & {{a}^{4}}-1  \\    b & {{b}^{3}} & {{b}^{4}}-1  \\    c & {{c}^{3}} & {{c}^{4}}-1  \\ \end{matrix}\, \right|\] = 0 , then the value of \[abc(ab+bc+ca)\]is  [Kurukshetra CEE 2002]

    A) \[a+b+c\]

    B) 0

    C) \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}\]

    D) \[{{a}^{2}}-{{b}^{2}}+{{c}^{2}}\]

    Correct Answer: A

    Solution :

    \[\left[ \begin{matrix}    a & {{a}^{3}} & {{a}^{4}}-1  \\    b & {{b}^{3}} & {{b}^{4}}-1  \\    c & {{c}^{3}} & {{c}^{4}}-1  \\ \end{matrix} \right]\,=0\] or  \[\left| \,\begin{matrix}    a & {{a}^{3}} & {{a}^{4}}  \\    b & {{b}^{3}} & {{b}^{4}}  \\    c & {{c}^{3}} & {{c}^{4}}  \\ \end{matrix}\, \right|+\left| \,\begin{matrix}    a & {{a}^{3}} & -1  \\    b & {{b}^{3}} & -1  \\    c & {{c}^{3}} & -1  \\ \end{matrix}\, \right|=0\] or  \[abc\text{  }\left| \,\begin{matrix}    1 & {{a}^{2}} & {{a}^{3}}  \\    1 & {{b}^{2}} & {{b}^{3}}  \\    1 & {{c}^{2}} & {{c}^{3}}  \\ \end{matrix}\, \right|+\left| \,\begin{matrix}    a & {{a}^{3}} & -1  \\    a-b & {{a}^{3}}-{{b}^{3}} & 0  \\    a-c & {{a}^{3}}-{{c}^{3}} & 0  \\ \end{matrix}\, \right|\,=0\] or  \[abc\text{  }\left| \,\begin{matrix}    1 & {{a}^{2}} & {{a}^{3}}  \\    0 & {{a}^{2}}-{{b}^{2}} & {{a}^{3}}-{{b}^{3}}  \\    0 & {{a}^{2}}-{{c}^{2}} & {{a}^{3}}-{{c}^{3}}  \\ \end{matrix}\, \right|+\left| \,\begin{matrix}    a & {{a}^{3}} & -1  \\    a-b & {{a}^{3}}-{{b}^{3}} & 0  \\    (a-c) & ({{a}^{3}}-{{c}^{3}}) & 0  \\ \end{matrix}\, \right|\,=0\] or  \[(abc)\,(a-b)\,(a-c)\,\left| \,\begin{matrix}    1 & {{a}^{2}} & {{a}^{3}}  \\    0 & a+b & {{a}^{2}}+{{b}^{2}}+ab  \\    0 & a+c & {{a}^{2}}+{{c}^{2}}+ac  \\ \end{matrix}\, \right|\,+\]\[(a-b)\,(a-c)\,\left| \,\begin{matrix}    a & {{a}^{3}} & -1  \\    1 & {{a}^{2}}+{{b}^{2}}+ab & 0  \\    1 & {{a}^{2}}+{{c}^{2}}+ac & 0  \\ \end{matrix}\, \right|\] or  \[(a-b)\,(a-c)\,[(abc)[(a+b)\,({{a}^{2}}+{{c}^{2}}+ac)-\]\[(a+c)({{a}^{2}}+{{b}^{2}}+ab)]]+(-1)\,(a-b)\,(a-c)\]\[[{{a}^{2}}+{{c}^{2}}+ac-{{a}^{2}}-{{b}^{2}}-ab]=0\] = \[(abc)\,[(a-b)\,(a-c)\,(c-b)(ac+ab+bc)]\]\[+(-1)(a-b)(a-c)(c-b)(a+b+c)=0\] \[\Rightarrow \] \[(abc)\,(ac+ab+bc)=a+b+c\].


You need to login to perform this action.
You will be redirected in 3 sec spinner