JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    The real part of  \[{{\sin }^{-1}}({{e}^{i\theta }})\]  is [RPET 1997]

    A) \[{{\cos }^{-1}}(\sqrt{\sin \theta })\]

    B) \[{{\sinh }^{-1}}(\sqrt{\sin \theta })\]

    C) \[{{\sin }^{-1}}(\sqrt{\sin \theta })\]

    D) \[{{\sin }^{-1}}(\sqrt{\cos \theta })\]

    Correct Answer: A

    Solution :

    \[{{\sin }^{-1}}({{e}^{i\theta }})=x+iy\] Þ \[\sin (x+iy)={{e}^{i\theta }}\] Þ \[\sin x\cosh y+i\cos x\sinh y=\cos \theta +i\sin \theta \] On comparison, \[\cosh y=\frac{\cos \theta }{\sin x}\], \[\sinh y=\frac{\sin \theta }{\cos x}\,\,\,\,\,\,\therefore {{\cosh }^{2}}y-{{\sinh }^{2}}y=1\] Þ \[\frac{1-{{\sin }^{2}}\theta }{1-{{\cos }^{2}}x}-\frac{{{\sin }^{2}}\theta }{{{\cos }^{2}}x}=1\] Þ  \[{{\cos }^{2}}x-{{\sin }^{2}}\theta {{\cos }^{2}}x-{{\sin }^{2}}\theta +{{\cos }^{2}}x{{\sin }^{2}}\theta \]= \[{{\cos }^{2}}x-{{\cos }^{4}}x\] Þ  \[{{\cos }^{4}}x={{\sin }^{2}}\theta \,\,\,\,\Rightarrow x={{\cos }^{-1}}\sqrt{\sin \theta }\].


You need to login to perform this action.
You will be redirected in 3 sec spinner