JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    If  \[\omega \] is a cube root of unity, then a root of the equation \[\left| \begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] is   [MNR 1990; MP PET 1999]

    A) \[x=1\]

    B) \[x=\omega \]

    C) \[x={{\omega }^{2}}\]

    D) \[x=0\]

    Correct Answer: D

    Solution :

    Given that \[\left| \begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] Applying transformation\[{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}\], we get    \[x\left| \begin{matrix}    1 & 1 & 1  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix} \right|=0\] Þ\[(x+{{\omega }^{2}})(x+\omega )-1+{{\omega }^{2}}-\omega (x+\omega )+\omega \] \[-{{\omega }^{2}}(x+{{\omega }^{2}})=0\] Þ \[{{x}^{2}}=0\]Þ\[x=0\] Trick: Putting  \[x=0,\] we get  \[\left| \begin{matrix}    1 & \omega  & {{\omega }^{2}}  \\    \omega  & {{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & \omega   \\ \end{matrix} \right|=0\]


You need to login to perform this action.
You will be redirected in 3 sec spinner