JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    If \[\sin \alpha +\sin \beta +\sin \gamma =0=\]\[\cos \alpha +\cos \beta +\cos \gamma ,\] then the value of  \[{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma \] is    [RPET 1999]

    A) 2/3

    B) 3/2

    C) 1/2

    D) 1

    Correct Answer: B

    Solution :

    \[\cos \alpha +\cos \beta +\cos \gamma =0\]         ??(i) \[\sin \alpha +\sin \beta +\sin \gamma =0\] ?....(ii) Let \[a=\cos \alpha +i\sin \alpha ,\]\[b\,=\cos \beta +i\sin \beta \]      \[c=\cos \gamma +i\sin \gamma \] \[\Rightarrow \] \[a+b+c=0\]        [by (i) and (ii)]  .....(iii) \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\] =\[{{[\cos \alpha +i\sin \alpha ]}^{-1}}+{{[\cos \beta +i\sin \beta ]}^{-1}}+{{[\cos \gamma +i\sin \gamma ]}^{-1}}\] \[=\cos \alpha -i\sin \alpha \]\[+\cos \beta -i\sin \beta \]\[+\cos \gamma -i\sin \gamma \] \[\Rightarrow \,ab+bc+ca=0\] ....(iv)   [by (i) and (ii)] Squaring both sides of equation (iii), we get \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca=0\] or \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=0\]           [by (iv)] \[\therefore \,{{[\cos \alpha +i\sin \alpha ]}^{2}}+{{[\cos \beta +i\sin \beta ]}^{2}}+{{[\cos \gamma +i\sin \gamma ]}^{2}}=0\] \[\Rightarrow \,(\cos 2\alpha +\cos 2\beta +\cos 2\gamma )\]\[+i\,(\sin 2\alpha +\sin 2\beta +\sin 2\gamma )=0\] separation of real and imaginary part , \[\Rightarrow \,\,\cos 2\alpha +\cos 2\beta +\cos 2\gamma =0\]    .....(v) and \[\sin 2\alpha +\sin 2\beta +\sin 2\gamma \,=0\]   .....(vi) \[\Rightarrow \,\,1-2{{\sin }^{2}}\alpha +1-2{{\sin }^{2}}\beta +1-2{{\sin }^{2}}\gamma =0\] [by eq. (v)] \[\therefore \,\,{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma =\frac{3}{2}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner