JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank De Moivre's theorem and Roots of unity

  • question_answer
    Let \[{{\omega }_{n}}=\cos \left( \frac{2\pi }{n} \right)+i\,\sin \left( \frac{2\pi }{n} \right)\,,\,{{i}^{2}}=-1\], then \[(x+y{{\omega }_{3}}+z{{\omega }_{3}}^{2})\] \[(x+y{{\omega }_{3}}^{2}+z{{\omega }_{3}})\] is equal to [AMU 2001]

    A) 0

    B) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\]

    C) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-yz-zx-xy\]\[\]

    D) \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+yz+zx+xy\]

    Correct Answer: C

    Solution :

    \[{{\omega }_{n}}=\cos \left( \frac{2\pi }{n} \right)+i\sin \left( \frac{2\pi }{n} \right)\] \[\Rightarrow {{\omega }_{3}}=\cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3}=-\frac{1}{2}+\frac{i\sqrt{3}}{2}=\omega \] and \[\omega _{3}^{2}={{\left( \cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3} \right)}^{2}}=\cos \frac{4\pi }{3}+i\sin \frac{4\pi }{3}\] \[=-\frac{1}{2}-\frac{i\sqrt{3}}{2}={{\omega }^{2}}.\] \[\therefore \,\,\,(x+y{{\omega }_{3}}+z\omega _{3}^{2})\,(x+y\omega _{3}^{2}+z{{\omega }_{3}})\] \[=(x+y\omega +z{{\omega }^{2}})\,(x+y{{\omega }^{2}}+z\omega )\] \[={{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx\].


You need to login to perform this action.
You will be redirected in 3 sec spinner