JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank Conjugate, Modulus and Argument of complex number

  • question_answer
    If \[{{z}_{1}}\text{ and }{{z}_{2}}\] be complex numbers such that \[{{z}_{1}}\ne {{z}_{2}}\] and \[|{{z}_{1}}|\,=\,|{{z}_{2}}|\]. If \[{{z}_{1}}\] has positive real part and \[{{z}_{2}}\] has negative imaginary part, then \[\frac{({{z}_{1}}+{{z}_{2}})}{({{z}_{1}}-{{z}_{2}})}\]may be [IIT 1986]

    A) Purely imaginary

    B) Real and positive

    C) Real and negative

    D) None of these

    Correct Answer: A

    Solution :

    Let \[{{z}_{1}}=a+ib=(a,b)\]and \[{{z}_{2}}=c-id=(c,-d)\] Where \[a>0\]and \[d>0\] ......(i) Then \[|{{z}_{1}}|=|{{z}_{2}}|\]Þ \[{{a}^{2}}+{{b}^{2}}={{c}^{2}}+{{d}^{2}}\] Now \[\frac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\frac{(a+ib)+(c-id)}{(a+ib)-(c-id)}\]                     \[=\frac{[(a+c)+i(b-d)][(a-c)-i(b+d)]}{[(a-c)+i(b+d)][(a-c)-i(b+d)]}\]                     \[=\frac{({{a}^{2}}+{{b}^{2}})-({{c}^{2}}+{{d}^{2}})-2(ad+bc)i}{{{a}^{2}}+{{c}^{2}}-2ac+{{b}^{2}}+{{d}^{2}}+2bd}\] \[\frac{-(ad+bc)i}{{{a}^{2}}+{{b}^{2}}-ac+bd}\] [using (i)] \[\therefore \]\[\frac{({{z}_{1}}+{{z}_{2}})}{({{z}_{1}}-{{z}_{2}})}\] is purely imaginary. However if \[ad+bc=0\], then \[\frac{({{z}_{1}}+{{z}_{2}})}{({{z}_{1}}-{{z}_{2}})}\] will be equal to zero. According to the conditions of the equation, we can have \[ad+bc=0\] Trick: Assume any two complex numbers satisfying both conditions i.e., \[{{z}_{1}}\ne {{z}_{2}}\]and \[|{{z}_{1}}|\,=\,|{{z}_{2}}|\] Let \[{{z}_{1}}=2+i,{{z}_{2}}=1-2i,\]\[\therefore \,\,\frac{{{z}_{1}}+{{z}_{2}}}{{{z}_{1}}-{{z}_{2}}}=\frac{3-i}{1+3i}=-i\] Hence the result.


You need to login to perform this action.
You will be redirected in 3 sec spinner