JEE Main & Advanced Mathematics Complex Numbers and Quadratic Equations Question Bank Condition for common roots, Quadratic expressions and Position of roots

  • question_answer
    If \[b>a\], then the equation \[(x-a)\,(x-b)=1\] has [IIT Screening 2000]

    A) Both roots in \[[a,\,b]\]

    B) Both roots in \[(-\infty ,\,a)\]

    C) Both roots in \[(b,\,+\infty )\]

    D) One root in \[(-\infty ,\,a)\] and the other in \[(b,\,+\infty )\]

    Correct Answer: D

    Solution :

    The equation is \[{{x}^{2}}-(a+b)\,x+ab-1=0\]        \[\therefore \] discriminant \[={{(a+b)}^{2}}-4(ab-1)={{(b-a)}^{2}}+4>0\] \[\therefore \] both roots are real. Let them be \[\alpha ,\beta \] where \[\alpha =\frac{(a+b)-\sqrt{{{(b-a)}^{2}}+4}}{2}\], \[\beta =\frac{(a+b)+\sqrt{{{(b-a)}^{2}}+4}}{2}\] Clearly,  \[\alpha <\frac{(a+b)-\sqrt{{{(b-a)}^{2}}}}{2}=\frac{(a+b)-(b-a)}{2}=a\,\,\]  \[(\because b>a)\] and \[\beta >\frac{(a+b)+\sqrt{{{(b-a)}^{2}}}}{2}=\frac{a+b+b-a}{2}=b\] Hence, one root \[\alpha \] is less than a and the other root b is greater than b.


You need to login to perform this action.
You will be redirected in 3 sec spinner