UPSC Biology Chemical Coordination (Endocrine System) Human Hormones

Human Hormones

Category : UPSC

Human Hormones

 

1.           Endocrine Glands

 

  • Endocrine glands lack ducts and are hence, called ductless glands. Their secretions are called hormones.
  • The classical definition of hormone as a chemical produced by endocrine glands and released into the blood and transported to a distantly located target organ has current scientific definition as follows: Hormones are non-nutrient chemicals which act as intercellular messengers and are produced in trace amounts. The new definition covers a number of new molecules in addition to the hormones secreted by the organized endocrine glands.
  • The endocrine glands and hormone producing diffused tissues/cells located in different parts of our body constitute the endocrine system. Pituitary, pineal, thyroid, adrenal, pancreas, parathyroid, thymus and gonads (testis in males and ovary in females) are the organised endocrine bodies in our body.
  • In addition to these, some other organs, e.g., gastrointestinal tract, liver, kidney, heart also produce hormones.

 

2.           The Hypothalamus

 

  • The hypothalamus is the basal part of diencephalon, forebrain and it regulates a wide spectrum of body functions.
  • It contains several groups of neurosecretory cells called nuclei which produce hormones. These hormones regulate the synthesis and secretion of pituitary hormones.
  • However, the hormones produced by hypothalamus are of two types, the releasing hormones (which stimulate secretion of pituitary hormones) and the inhibiting hormones (which inhibit secretions of pituitary hormones).
  • For example a hypothalamic hormone called Gonadotrophin releasing hormone (GnRH) stimulates the pituitary synthesis and release of gonadotrophins. On the other hand, somatostatin from the hypothalamus inhibits the release of growth hormone from the pituitary.
  • These hormones originating in the hypothalamic neurons, pass through axons and are released from their nerve endings. These hormones reach the pituitary gland through a portal circulatory system and regulate the functions of the anterior pituitary. The posterior pituitary is under the direct neural regulation of the hypothalamus.

 

3.           The Pituitary Gland

 

  • The Pituitary Gland is produces growth hormone (GH), prolactin (PRL), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Pars intermedia secretes only one hormone called melanocyte stimulating hormone (MSH).
  • Pituitary, stores and releases two hormones called oxytocin and vasopressin.
  • Over-secretion of GH stimulates abnormal growth of the body leading to gigantism and low secretion of GH results in stunted growth resulting in pituitary dwarfism.
  • Prolactin regulates the growth of the mammary glands and formation of milk in them. TSH stimulates the synthesis and secretion of thyroid hormones from the thyroid gland.
  • ACTH stimulates the synthesis and secretion of steroid hormones called glucocorticoids from the adrenal cortex.
  • LH and FSH stimulate gonadal activity and hence are called gonadotrophins. In males, LH stimulates the synthesis and secretion of hormones called androgens from testis. In males, FSH and androgens regulate spermatogenesis.
  • In females, LH induces ovulation of fully mature follicles (graafian follicles) and maintains the corpus luteum, formed from the remnants of the graafian follicles after ovulation. FSH stimulates growth and development of the ovarian follicles in females,
  • Melanocytes Stimulating Hormones (MSH) acts on the melanocytes (melanin containing cells) and regulates pigmentation of the skin.
  • Oxytocin acts on the smooth muscles of our body and stimulates their contraction. In females, it stimulates a vigorous contraction of uterus at the time of child birth, and milk ejection from the mammary gland.
  • Vasopressin acts mainly at the kidney and stimulates resorption of water and electrolytes by the distal tubules and thereby reduces loss of water through urine (diuresis). Hence, it is also called as anti-diuretic hormone (ADH).

 

 

4.           The Pineal Gland

 

  • The pineal gland is located on the dorsal side of forebrain.
  • Pineal secretes a hormone called melatonin. Melatonin plays a very important role in the regulation of a 24-hour (diurnal) rhythm of our body.
  • For example, it helps in maintaining the normal rhythms of sleep-wake cycle, body temperature. In addition, melatonin also influences metabolism, pigmentation, the menstrual cycle as well as our defense capability.

 

 

5.           Thyroid Gland

 

  • The thyroid gland is composed of two lobes which are located on either side of the trachea. Both the lobes are interconnected with a thin flap of connective tissue called isthmus. Thyroid Gland are follicular cells which synthesise two hormones, tetraiodothyronine or thyroxine \[({{T}_{4}})\]and triiodothyronine \[({{T}_{3}})\].
  • Iodine is essential for the normal rate of hormone synthesis in the thyroid. Deficiency of iodine in our diet results in hypothyroidism and enlargement of the thyroid gland, commonly called goitre.
  • Hypothyroidism during pregnancy causes defective development and maturation of the growing baby leading to stunted growth (cretinism), mental retardation, low intelligence quotient, abnormal skin, deaf-mutism, etc.
  • In adult women, hypothyroidism may cause menstrual cycle to become irregular.
  • Due to cancer of the thyroid gland or due to development of nodules of the thyroid glands, the rate of synthesis and secretion of the thyroid hormones is increased to abnormal high levels leading to a condition called hyperthyroidism which adversely affects the body physiology.
  • Thyroid hormones play an important role in the regulation of the basal metabolic rate. These hormones also support the process of red blood cell formation. Thyroid hormones control the metabolism of carbohydrates, proteins and fats. Maintenance of water and electrolyte balance is also influenced by thyroid hormones. Thyroid gland also secretes a protein hormone called thyrocalcitonin (TCT) which regulates the blood calcium levels.


 

 6.           Parathyroid Gland

 

  • In humans, four parathyroid glands are present on the back side of the thyroid gland, one pair each in the two lobes of the thyroid gland. The parathyroid glands secrete a peptide hormone called parathyroid hormone (PTH). The secretion of PTH is regulated by the circulating levels of calcium ions.
  • Parathyroid hormone (PTH) increases the \[C{{a}^{2+}}\]levels in the blood. PTH acts on bones and stimulates the process of bone resorption (dissolution/demineralisation). PTH also stimulates reabsorption of \[C{{a}^{2+}}\] by the renal tubules and increases \[C{{a}^{2+}}\] absorption from the digested food. It is, thus, clear that PTH is a hypercalcemic hormone, i.e., it increases the blood \[C{{a}^{2+}}\] levels. Along with TCT, it plays a significant role in calcium balance in the body.

 

7.           Thymus

 

  • The thymus gland is a lobular structure located between lungs behind sternum on the ventral side of aorta.
  • The thymus plays a major role in the development of the immune system. This gland secretes the peptide hormones called thymosins. Thymosins play a major role in the differentiation of T-lymphocytes, which provide cell-mediated immunity.
  • In addition, thymosins also promote production of antibodies to provide humoral immunity. Thymus is degenerated in old individuals resulting in a decreased production of thymosins. As a result, the immune responses of old persons become weak.

 

8.           Adrenal Gland

 

  • Our body has one pair of adrenal glands, one at the anterior part of each kidney. The gland is composed of two types of tissues. The centrally located tissue is called the adrenal medulla, and outside this lies the adrenal cortex.
  • The adrenal medulla secretes two hormones called adrenaline or epinephrine and noradrenaline or norepinephrine. These are commonly called as catecholamines.
  • Adrenaline and noradrenaline are rapidly secreted in response to stress of any kind and during emergency situations and are called emergency hormones or hormones of Fight or Flight. These hormones increase alertness, pupilary dilation, piloerection (raising of hairs), sweating etc.
  • Both the hormones increase the heartbeat, the strength of heart contraction and the rate of respiration. Catecholamines also stimulate the breakdown of glycogen resulting in an increased concentration of glucose in blood. In addition, they also stimulate the breakdown of lipids and proteins.
  • The adrenal cortex secretes many hormones, commonly called as corticoids. The corticoids, which are involved in carbohydrate metabolism are called glucocorticoids.
  • In our body, cortisol is the main glucocorticoid. Corticoids, which regulate the balance of water and electrolytes in our body are called mineralocorticoids. Aldosterone is the main mineralocorticoid in our body.
  • Glucocorticoids stimulate gluconeogenesis, lipolysis and proteolysis; and inhibit cellular uptake and utilisation of amino acids.
  • Cortisol is also involved in maintaining the cardio-vascular system as well as the kidney functions. Glucocorticoids, particularly cortisol, produces antiinflammatory reactions and suppresses the immune response. Cortisol stimulates the RBC production.
  • Aldosterone acts mainly at the renal tubules and stimulates the reabsorption of \[N{{a}^{+}}\]and water and excretion of \[{{K}^{+}}\]and phosphate ions. Thus, aldosterone helps in the maintenance of electrolytes, body fluid volume, osmotic pressure and blood pressure. Small amounts of androgenic steroids are also secreted by the adrenal cortex which play a role in the growth of axial hair, pubic hair and facial hair during puberty.

 

9.           Pancreas

 

  • Pancreas is a composite gland which acts as both exocrine and endocrine gland. The endocrine pancreas consists of 'Islets of Langerhans’.
  • There are about 1 to 2 million Islets of Langerhans in a normal human pancreas representing only 1 to 2 per cent of the pancreatic tissue. The two main types of cells in the Islet of Langerhans are called a-cells and \[\beta \]-cells. The a-cells secrete a hormone called glucagon, while the \[\beta \]-cells secrete insulin.
  • Glucagon is a peptide hormone, and plays an important role in maintaining the normal blood glucose levels. Glucagon acts mainly on the liver cells (hepatocytes) and stimulates glycogenolysis resulting in an increased blood sugar (hyperglycemia).
  • In addition, this hormone stimulates the process of gluconeogenesis which also contributes to hyperglycemia.
  • Glucagon reduces the cellular glucose uptake and utilisation. Thus, glucagon is a hyper- glycemic hormone.
  • Insulin is a peptide hormone, which plays a major role in the regulation of glucose homeostasis. Insulin acts mainly on hepatocytes and adipocytes (cells of adipose tissue), and enhances cellular glucose uptake and utilisation. As a result, there is a rapid movement of glucose from blood to hepatocytes and adipocytes resulting in decreased blood glucose levels (hypoglycemia).
  • Insulin also stimulates conversion of glucose to glycogen (glycogenesis) in the target cells. The glucose homeostasis in blood is thus maintained jointly by the two - insulin and glucagons.
  • Prolonged hyperglycemia leads to a complex disorder called diabetes mellitus which is associated with loss of glucose through urine and formation of harmful compounds known as ketone bodies. Diabetic patients are successfully treated with insulin therapy.

 

10.        Testis

 

  • Testis performs dual functions as a primary sex organ as well as an endocrine gland. Testis is composed of seminiferous tubules and stromal or interstitial tissue. The Ley dig cells or interstitial cells, which are present in the intertubular spaces produce a group of hormones called androgens mainly testosterone.
  • Androgens regulate the development, maturation and functions of the male accessory sex organs like epididymis, vas deferens, seminal vesicles, prostate gland, urethra etc. These hormones stimulate muscular growth, growth of facial and axillary hair, aggressiveness, low pitch of voice etc.
  • Androgens play a major stimulatory role in the process of spermatogenesis (formation of spermatozoa). Androgens act on the central neural system and influence the male sexual behaviour (libido). These hormones produce anabolic (synthetic) effects on protein and carbohydrate metabolism.

 

11.        Ovary

 

  • Ovary is the primary female sex organ which produces one ovum during each menstrual cycle. In addition, ovary also produces two groups of steroid hormones called estrogen and progesterone.
  • Ovary is composed of ovarian follicles and stromal tissues. The estrogen is synthesized and secreted mainly by the growing ovarian follicles. After ovulation, the ruptured follicle is converted to a structure called corpus luteum, which secretes mainly progesterone.
  • Estrogens produce wide ranging actions such as stimulation of growth and activities of female secondary sex organs, development of growing ovarian follicles, appearance of female secondary sex characters (e.g., high pitch of voice, etc.), mammary gland development. Estrogens also regulate female sexual behaviour.
  • Progesterone supports pregnancy. Progesterone also acts on the mammary glands and stimulates the formation of alveoli (sac-like structures which store milk) and milk secretion.

 

12.        Hormones of Heart, Kidney and Gastrointestinal Tract

 

  • The atrial wall of our heart secretes a very important peptide hormone called atrial natriuretic factor (ANF), which decreases blood pressure.
  • When blood pressure is increased, ANF is secreted which causes dilation of the blood vessels. This reduces the blood pressure.
  • The juxtaglomerular cells of kidney produce a peptide hormone called erythropoietin which stimulates erythropoiesis (formation of RBC).
  • Endocrine cells present in different parts of the gastro-intestinal tract secrete four major peptide hormones, namely gastrin, secretin, cholecystokinin (CCK) and gastric inhibitory peptide (GIP).
  • Gastrin acts on the gastric glands and stimulates the secretion of hydrochloric acid and pepsinogen. Secretin acts on the exocrine pancreas and stimulates secretion of water and bicarbonate ions. CCK acts on both pancreas and gall bladder and stimulates the secretion of pancreatic enzymes and bile juice, respectively.
  • GIP inhibits gastric secretion and motility. Several other non-endocrine tissues secrete hormones called growth factors. These factors are essential for the normal growth of tissues and their repairing/regeneration.

 

Note - On the basis of their chemical nature, hormones can be divided into groups:

  • peptide, polypeptide, protein hormones (e.g., insulin, glucagon, pituitary hormones, hypothalamic hormones, etc.)
  • steroids (e.g., cortisol, testosterone, estradiol and progesterone)
  • iodothyronines (thyroid hormones)
  • amino-acid derivatives (e.g., epinephrine).

 

Other Topics


You need to login to perform this action.
You will be redirected in 3 sec spinner