# 6th Class Mathematics Mensuration MENSURATION

MENSURATION

Category : 6th Class

Learning Objective

• To understand the concept of Area and Perimeter of plane figures (triangle, rectangle and square).
• To learn how to calculate area and perimeter of triangle, react angel and square.
• To understand how to calculate area and circumference of circle.
• To learn how to calculate surace area and volume of solid figures (cube and cuboid).

AREA AND PERIMETER OF PLANE FIGURE

PERIMETER

The perimeter of a plane geometrical figure is the total length of sides (or boundary) enclosing the figure. Units of measuring perimeter can be mm, cm, m, km etc.

AREA

The area of any figure is the amount of surface enclosed within its bounding lines. Area is always expressed in square units.

1. TRIANGLE

Perimeter of a triangle is equal to the sum of its sides.

For a triangle having sides a, b and c,

Perimeter $=a+b+c$

and area $(A)\,=\sqrt{s(s-a)(s-b)\,(s-c)}$

where $s=\frac{a+b+c}{2}$

area of equilateral triangle with each side a is $\frac{\sqrt{3}}{4}{{\text{(side)}}^{2}}$.

Observe the given figure

Area of $\Delta ABC$$=\frac{1}{2}\times base\times height$ $=\frac{1}{2}\times BC\times AD$

Observe the given figure,

$\Delta \,ABC$ is a right angled triangle, right angled at B. Area of $\Delta \,ABC=\frac{1}{2}\,BC\times AB$

For Example:

Find the perimeter and area of triangle ABC.

Sol:     $P=AB+BC+CA$ = 7 + 4 + 5 = 16 cm Base = BC, Height =AD Area

$=\frac{1}{2}\times BC\times AD$

$=\frac{1}{2}\times 4\times 3$

$=6c{{m}^{2}}$

2. RECTANGLE

Area of rectangle $ABCD=AB\times BC=l\times b$

Perimeter of rectangle = sum of all sides

$=l+b+l+b$ $=2l+2b$ $=2(l+b)$ Diagonal (AC) of rectangle $=\sqrt{{{l}^{2}}+{{b}^{2}}}$

For example: (i) the perimeter;

(ii) the area.

Sol. Perimeter $=2(l+b)\,=2(6+4)\,=2\times 10=20\,cm$ Area $=l\times b=6\times 4=24\,c{{m}^{2}}$

3. SQUARE Perimeter of square ABCD with side $a=4a$

Area of square with side $a={{a}^{2}}$

Diagonal of square

$=AC=\sqrt{{{a}^{2}}+{{a}^{2}}}=\,\sqrt{2{{a}^{2}}}\,=a\sqrt{2}$

$=\sqrt{2}\times$ side of square

For example (i) the perimeter;

(ii) the area

Sol. Perimeter $=4a=4\times 5=20\,cm$

Area $={{a}^{2}}=5\times 5=25\,c{{m}^{2}}$

AREA AND CIRCUMFERENCE OF CIRCLE

CIRCLE

A circle is a path in a plane travelled by a point which moves in such a way that its distance from a fixed point is always constant.

The fixed point is called centre of circle and fixed distance is called radius of the circle,

Circumference or perimeter of circle of radius ‘r’, is $C=2\pi r=\pi d$($(2r=d,d=$diameter)

Area of circle of radius $'r'=\pi {{r}^{2}}$

SEMI-CIRCLE

A semicircle is a figure enclosed by a diameter and part of circumference of the circle cut-off by it.

Area of semicircle of radius $'r'=\frac{\pi {{r}^{2}}}{2}$ Circumference of semicircle of radius $'r'=\pi r$

SURFACE AREA AND VOLUME OF SOLIDS

CUBOID

A cuboid is a three dimensional box. It has six rectangular faces. It is defined by the virtue of its length $(\ell )$, breadth (b) and height (h). It can be visualized as a room. It is also called rectangular parallelepiped.

Total surface area $(TSA)\,=2\,(lh=lb+bh)$ Sq. units.

Lateral surface area (LSA) is the area of four walls (excluding area of base and top)

= 2h (1+b) Sq. units. Length of diagonal of cuboid $=\sqrt{{{1}^{2}}+{{h}^{2}}+{{b}^{2}}}$

Volume of cuboid = Space occupied by cuboid = Area of base x height $=(1\times b)\,\times h=1\times b\times h$ cubic units

For example

Find the surface area of a room having dimension $12m\times 8m\times 5m$.

Sol.

Total surface area of room $=2(lb+bh+lh)$

$=2(12\times 8+8\times 5+12\times 5)$

=2(96 + 40 + 60)

$=2\times 196$

$=392{{m}^{2}}$

CUBE

A cube is a cuboid which has all its edges equal i.e. length = breadth = height = 'a' say.

Area of each face of the cube is ${{a}^{2}}$ square units.

Total surface area (TSA) of square = Area of 6 square faces of cube TSA $=6\times {{a}^{2}}=6{{a}^{2}}\,sq$.units.

Lateral surface area of cube (LSA) = Area of four faces (excluding bottom and top face)

$LSA=4\times {{a}^{2}}$

$LSA=4{{a}^{2}}$ sq. units. Length of diagonal (d) of cube

$=\sqrt{{{a}^{2}}+{{a}^{2}}+{{a}^{2}}}\,=\sqrt{3{{a}^{2}}}$

$=a\sqrt{3}$

Volume of cube (V) = Base Area x Height

$V={{a}^{2}}\times a={{a}^{3}}$ cubic units

For example

(i) Total surface area

(ii) Lateral surface area

(iii) Volume Sol.

(i) Surface area

$=6\times {{(side)}^{2}}=6\times {{(5\,cm)}^{2}}\,=150c{{m}^{2}}$

(ii) Lateral surface area

$=4\times \,{{(side)}^{2}}=4\times {{(5cm)}^{2}}=100c{{m}^{2}}$

(iii) Valume $={{(side)}^{2}}={{(5\,cm)}^{3}}=125c{{m}^{3}}$.

#### Other Topics

##### Notes - Mensuration

You need to login to perform this action.
You will be redirected in 3 sec 