JEE Main & Advanced Physics NLM, Friction, Circular Motion Motion of Connected Block Over A Pulley

Motion of Connected Block Over A Pulley

Category : JEE Main & Advanced

 

Condition Free body diagram Equation Tension and acceleration
                      \[{{m}_{1}}a={{T}_{1}}-{{m}_{1}}g\] \[{{T}_{1}}=\frac{2{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}g\]
    \[{{m}_{2}}a={{m}_{2}}g-{{T}_{1}}\] \[{{T}_{2}}=\frac{4{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}g\]
      \[{{T}_{2}}=2{{T}_{1}}\] \[a=\left[ \frac{{{m}_{2}}-{{m}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right]g\]
                      \[{{m}_{1}}a={{T}_{1}}-{{m}_{1}}g\] \[{{T}_{1}}=\frac{2{{m}_{1}}[{{m}_{2}}+{{m}_{3}}]}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}}\]
      \[{{m}_{2}}a={{m}_{2}}g+{{T}_{2}}-{{T}_{1}}\] \[{{T}_{2}}=\frac{2{{m}_{1}}{{m}_{3}}}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}}g\]
    \[{{m}_{3}}a={{m}_{3}}g-{{T}_{2}}\] \[{{T}_{3}}=\frac{4{{m}_{1}}[{{m}_{2}}+{{m}_{3}}]}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}}g\]
  \[{{T}_{3}}=2{{T}_{1}}\] \[a=\frac{[({{m}_{2}}+{{m}_{3}})-{{m}_{1}}]g}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}}\]

                     

Condition Free body diagram Equation Tension and acceleration
When pulley have a finite mass M and radius R then tension in two segments of string are different                       \[{{m}_{1}}a={{m}_{1}}g-{{T}_{1}}\] \[a=\frac{{{m}_{1}}-{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}+\frac{M}{2}}\]
      \[{{m}_{2}}a={{T}_{2}}-{{m}_{2}}g\] \[{{T}_{1}}=\frac{{{m}_{1}}\left[ 2{{m}_{2}}+\frac{M}{2} \right]}{{{m}_{1}}+{{m}_{2}}+\frac{M}{2}}g\]
    Torque = \[=({{T}_{1}}-{{T}_{2}})R=I\alpha \] \[({{T}_{1}}-{{T}_{2}})R=I\frac{a}{R}\] \[({{T}_{1}}-{{T}_{2}})R=\frac{1}{2}M{{R}^{2}}\frac{a}{R}\] \[{{T}_{1}}-{{T}_{2}}=\frac{Ma}{2}\]       \[{{T}_{2}}=\frac{{{m}_{2}}\left[ 2{{m}_{1}}+\frac{M}{2} \right]}{{{m}_{1}}+{{m}_{2}}+\frac{M}{2}}g\]
                  \[T={{m}_{1}}a\] \[a=\frac{{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}g\]
        \[{{m}_{2}}a={{m}_{2}}g-T\] \[T=\frac{{{m}_{1}}{{m}_{2}}}{{{m}_{1}}+{{m}_{2}}}g\]
              \[{{m}_{1}}a=T-{{m}_{1}}g\sin \theta \] \[a=\left[ \frac{{{m}_{2}}-{{m}_{1}}\sin \theta }{{{m}_{1}}+{{m}_{2}}} \right]g\]
        \[{{m}_{2}}a={{m}_{2}}g-T\] \[T=\frac{{{m}_{1}}{{m}_{2}}(1+\sin \theta )}{{{m}_{1}}+{{m}_{2}}}g\]
            \[T-{{m}_{1}}g\sin \alpha ={{m}_{1}}a\]   \[a=\frac{({{m}_{2}}\sin \beta -{{m}_{1}}\sin \alpha )}{{{m}_{1}}+{{m}_{2}}}g\]
\[{{m}_{2}}a={{m}_{2}}g\sin \beta -T\] \[T=\frac{{{m}_{1}}{{m}_{2}}(\sin \alpha +\sin \beta )}{{{m}_{1}}+{{m}_{2}}}g\]

       

Condition Free body diagram Equation Tension and acceleration
              \[{{m}_{1}}g\sin \theta -T={{m}_{1}}a\] \[a=\frac{{{m}_{1}}g\sin \theta }{{{m}_{1}}+{{m}_{2}}}\]
      \[T={{m}_{2}}a\] \[T=\frac{2{{m}_{1}}{{m}_{2}}}{4{{m}_{1}}+{{m}_{2}}}g\]  
          As \[\frac{{{d}^{2}}({{x}_{2}})}{d{{t}^{2}}}\] \[=\frac{1}{2}\frac{{{d}^{2}}({{x}_{1}})}{d{{t}^{2}}}\] \[\therefore \,\,{{a}_{2}}=\frac{{{a}_{1}}}{2}\] \[{{a}_{1}}=\] acceleration of block A \[{{a}_{2}}=\] acceleration of block B           \[T={{m}_{1}}a\]     \[{{a}_{1}}=a=\frac{2{{m}_{2}}g}{4{{m}_{1}}+{{m}_{2}}}\]                
\[{{m}_{2}}\frac{a}{2}={{m}_{2}}g-2T\] \[{{a}_{2}}=\frac{{{m}_{2}}g}{4{{m}_{1}}+{{m}_{2}}}\] \[T=\frac{2{{m}_{1}}{{m}_{2}}g}{4{{m}_{1}}+{{m}_{2}}}\]
                    \[{{m}_{1}}a={{m}_{1}}g-{{T}_{1}}\] \[a=\frac{({{m}_{1}}-{{m}_{2}})}{[{{m}_{1}}+{{m}_{2}}+M]}g\]
        \[{{m}_{2}}a={{T}_{2}}-{{m}_{2}}g\] \[{{T}_{1}}=\frac{{{m}_{1}}(2{{m}_{2}}+M)}{[{{m}_{1}}+{{m}_{2}}+M]}g\]
      \[{{T}_{1}}-{{T}_{2}}=Ma\] \[{{T}_{2}}=\frac{{{m}_{2}}(2{{m}_{2}}+M)}{[{{m}_{1}}+{{m}_{2}}+M]}g\]

    Motion of massive string

Condition Free body diagram Equation Tension and acceleration
              force applied by the string on the block       \[F=(M+m)a\] \[{{T}_{1}}=Ma\]       \[a=\frac{F}{M+m}\] \[{{T}_{1}}=M\frac{F}{(M+m)}\]    
  Tension at mid point of the rope \[{{T}_{2}}=\left( M+\frac{m}{2} \right)\,a\]   \[{{T}_{2}}=\frac{(2M+m)}{2(M+m)}F\]  
  m = Mass of string T = Tension in string at a distance x from the end where the force is applied       \[F=ma\]       \[a=F/m\]  
  \[T=m\,\left( \frac{L-x}{L} \right)\,a\] \[T=\left( \frac{L-x}{L} \right)\,F\]
    M = Mass of uniform string L = Length of string   \[{{F}_{1}}-T=\frac{Mxa}{L}\] \[a=\frac{{{F}_{1}}-{{F}_{2}}}{M}\]
\[{{F}_{1}}-{{F}_{2}}=Ma\]   \[T={{F}_{1}}\left( 1-\frac{x}{L} \right)+{{F}_{2}}\left( \frac{x}{L} \right)\]
                Mass of segment BC \[=\left( \frac{M}{L} \right)x\]         \[T'=\frac{M}{L}(L-x)g+T\]     \[T=F+\frac{M}{L}xg\]     \[T'=F+Mg\]   \[T=F+\frac{M}{L}xg\]    

   

Other Topics


You need to login to perform this action.
You will be redirected in 3 sec spinner