Notes - Mathematics Olympiads - Statistics
Category : 11th Class
Statistics
Statistics history is very old. Early statistics is considered as the imposed form of applied mathematics.
(i) Statistics are aggregate of facts.
(ii) Statistics are affected by a number of factors.
(iii) Statistics are collected in systematic manner.
(iv) Statistics must be reasonable accurate.
It is both art and science.
Note: Statistics without science has no fruit and science without statistics has no roots.
Measure of Central Tendency
The commanly used measure of central tendency are:
(a) Arithmetic Mean
(b) Geometric Mean
(c) harmonic Mean
(d) Median
(e) Mode
Let \[{{x}_{1}},\,{{x}_{2}},\,{{x}_{3}}.....{{x}_{n}}\] are n observations. Then their arithmetic mean is written as
\[\overline{x}=\frac{x1+x2+x3+....xn}{n}=\frac{1}{n}.\sum\limits_{i=1}^{n}{xi}\]
\[=\frac{Sum\,\,o\text{f}\,\,\text{observations}}{no.\,\,o\text{f}\,\,\text{observations}}\]
\[\overline{x}=\frac{\sum{\text{f}\text{.x}}}{\sum{\text{f}}}\]
Weighted Arithmetic Mean:
If \[{{w}_{1}},\,{{w}_{2}},\,{{w}_{3}},\,......{{w}_{n}}\] are the weights assigned to the values \[{{x}_{1}},\,{{x}_{2}},\,{{x}_{3}},\,{{x}_{4}}\,......{{x}_{n}}\] respectively. Then the weighted average, or weighted
\[A.M==\frac{{{w}_{1}}{{x}_{1}}+{{w}_{2}}{{x}_{2}}+{{w}_{3}}{{x}_{3}}+......{{w}_{n}}{{x}_{n}}}{{{w}_{1}}+{{w}_{2}}+{{w}_{3}}+.....{{w}_{n}}}\]
A.M of two data sets can be obtained as.
\[{{\overline{x}}_{12}}=\frac{{{n}_{1}}{{\overline{x}}_{1}}+{{n}_{2}}{{\overline{x}}_{2}}}{{{n}_{1}}+{{n}_{2}}}\]
Where, \[{{\overline{x}}_{12}}=\] combined mean of the two data sets 1 and 2
0 Mean of 1st data
\[{{\overline{x}}_{2}}=\]Mean of the 2nd data
\[{{n}_{1}}=\]size of the 1st data.
\[{{n}_{2}}=\]size of the 2nd data.
Some properties about A.M.
In statistical data, sum of the deviation of individual values from A.M. is always zero.
i.e. \[\sum\limits_{i=1}^{n}{\text{f}i}({{x}_{1}}-\overline{x})=0\]
Where \[\text{f}i=\] frequencies of \[xi\,\,\{1\le i\le n\}\]
A.M is written s
\[A.M\,\,=\overline{x}=\frac{{{x}_{1}}{{\text{f}}_{\text{1}}}+{{x}_{2}}{{\text{f}}_{2}}+...{{x}_{n}}{{\text{f}}_{n}}}{{{\text{f}}_{1}}+{{\text{f}}_{2}}+{{\text{f}}_{3}}+....{{\text{f}}_{n}}}=\frac{\sum\limits_{i=1}^{n}{{{\text{f}}_{i}}{{x}_{i}}}}{\sum\limits_{i=1}^{n}{\text{f}i}}\]
Then, we find deviation, \[{{d}_{i}}=({{x}_{i}}-A)\] for each term.
Thus \[A.M=\overline{x}=A+\frac{\sum{{{\text{f}}_{i}}{{d}_{i}}}}{{{\text{f}}_{i}}}\]
where A = Assumed Mean, f = frequency
Where A = Assumed mean
\[{{d}_{i}}=\frac{{{x}_{i}}-A}{h}=\]deviation of any variate from A
h = width of the class-interval and \[N=\Sigma {{\text{f}}_{i}}\]
In a statistical date, the sum of square of deviations of individual values from A.M. is least.
i.e. \[\sum\limits_{i=1}^{n}{\text{f}i{{(x-\overline{x})}^{2}}=}\] least value
If each of the given observation is doubled then their arithmetic mean is doubled
If \[\overline{x}\]then the mean of \[{{x}_{1}},\,{{x}_{2}},\,{{x}_{3}},.....{{x}_{n}}.\]then the mean of \[a{{x}_{1}},\,a{{x}_{2}},\,a{{x}_{3}},.....a{{x}_{n}}\]where a is any number different from zero, is \[\overline{ax}\]
\[G.M={{\{{{x}_{1}}.{{x}_{2}}.{{x}_{3}}....{{x}_{n}}\}}^{\frac{1}{n}}}\]
\[G.M=Anti\log \left\{ \frac{\log {{x}_{1}}+\log {{x}_{2}}+\log {{x}_{n}}}{n} \right\}\]
For classified/grouped data.
\[G.M={{({{x}_{1}}.{{\text{f}}_{1}}+{{x}_{2}}.{{\text{f}}_{2}}+......{{x}_{n}}.{{f}_{n}})}^{\frac{1}{n}}}\]
Where \[N=\sum\limits_{i=1}^{n}{{{\text{f}}_{i}}}\]
\[G.M=Anti\log \left\{ \frac{\sum\limits_{i=1}^{n}{{{\text{f}}_{i}}lo{{x}_{i}}}}{n} \right\}\]
\[H.M=\frac{n}{\frac{1}{{{x}_{1}}}+\frac{1}{{{x}_{2}}}+\frac{1}{{{x}_{3}}}+....+\frac{1}{{{x}_{n}}}}\]
If \[{{x}_{1}},\,{{x}_{2}},\,{{x}_{3}},.....{{x}_{n}}\] are n observation which occur with frequencies \[{{\text{f}}_{1}},\,{{\text{f}}_{2}},\,{{\text{f}}_{3}},....{{\text{f}}_{n}}\] respectively.
Then
\[H.M=\frac{\sum\limits_{i=1}^{n}{{{\text{f}}_{i}}}}{\sum\limits_{i=1}^{n}{\left( \frac{{{\text{f}}_{i}}}{{{x}_{i}}} \right)}}\]
Note: For Harmonic sequence be inverse sequence of arithmetic sequence (progression)
\[A.M=\frac{a+b}{2},G.M=\sqrt{ab}\And H.M=\frac{2a.b}{a+b}\]
If \[a=b\]
the \[A.M=G.M=H.M.\]
\[A.M\ge G.M\ge H.M.\](for any observation)
You need to login to perform this action.
You will be redirected in
3 sec