JEE Main & Advanced Chemistry Hydrocarbons / हाइड्रोकार्बन Distinction Between Alkanes, Alkenes And Alkynes

Distinction Between Alkanes, Alkenes And Alkynes

Category : JEE Main & Advanced

 

Property Alkane (Ethane) Alkene (Ethene) Alkyne (Ethyne)
Molecular formula \[{{C}_{n}}{{H}_{2n+2}}({{C}_{2}}{{H}_{6}})\] \[{{C}_{n}}{{H}_{2n}}({{C}_{2}}{{H}_{4}})\] \[{{C}_{n}}{{H}_{2n2}}({{C}_{2}}{{H}_{2}})\]
Nature Saturated Unsaturated Unsaturated
 

Single bond between carbon atoms. Each carbon atom is \[s{{p}^{3}}-\]hybridized

 

Bond length \[1.54\,\overset{o}{\mathop{A}}\,\]

Bond energy :

\[83\text{  }Kcal\text{ }mo{{l}^{-1}}\]
 

Double bond between two carbon atoms. Both carbon atoms are \[s{{p}^{2}}-\]hybridized

\[1.34\overset{o}{\mathop{A}}\,\]

\[146\,\,Kcal\,\,mo{{l}^{-1}}\]

Triple bond between two carbon atoms both carbon atoms are sp-hybridized

\[-C\equiv C-\]

\[1.20\,\,\overset{o}{\mathop{A}}\,\]

\[200\,\,Kcal\,\,mo{{l}^{-1}}\]
Burning

Burns with nonluminous flame

\[{{C}_{2}}{{H}_{6}}+7/2{{O}_{2}}\to \]\[2C{{O}_{2}}+3{{H}_{2}}O\]

Burns with luminous flame

\[{{C}_{2}}{{H}_{4}}+3{{O}_{2}}\to \]\[2C{{O}_{2}}+2{{H}_{2}}O\]

Burns with smoky flame

\[{{C}_{2}}{{H}_{2}}+5/2{{O}_{2}}\to \]\[2C{{O}_{2}}+{{H}_{2}}O\]

Reaction with \[{{H}_{2}}\]

Forms alkane

\[{{C}_{n}}{{H}_{2n}}+\text{ }{{H}_{2}}\xrightarrow[{{300}^{o}}C]{Ni}\]\[\underset{{{C}_{n}}{{H}_{2n+2}}}{\mathop{{{C}_{n}}{{H}_{2n+2}}}}\,\]

\[{{C}_{2}}{{H}_{4}}+\text{ }{{H}_{2}}\to \]\[{{C}_{2}}{{H}_{6}}\]

Forms alkene and alkane

\[{{C}_{n}}{{H}_{2n}}+\text{ }{{H}_{2}}\xrightarrow[{{300}^{o}}C]{Ni}\]\[~\underset{Alkane}{\mathop{{{C}_{n}}{{H}_{2n+2}}}}\,\]

\[{{C}_{n}}{{H}_{2n2}}+\text{ }{{H}_{2}}~\xrightarrow[{{300}^{o}}C]{Ni}\]\[\underset{Alkene}{\mathop{{{C}_{n}}{{H}_{2n}}}}\,\]

Reation with conc. \[{{H}_{2}}S{{O}_{4}}\] and hydrolysis

Addition

\[{{C}_{2}}{{H}_{4}}+{{H}_{2}}S{{O}_{4}}\xrightarrow[{}]{{}}\]

\[{{C}_{2}}{{H}_{5}}HS{{O}_{4}}\xrightarrow{{{H}_{2}}O}\] \[\underset{Alcohol}{\mathop{{{C}_{2}}{{H}_{5}}OH}}\,\]

 

Addition

\[{{C}_{2}}{{H}_{2}}\to C{{H}_{3}}CH{{(HS{{O}_{4}})}_{2}}\]\[\xrightarrow{{{H}_{2}}O}\]\[\underset{Aldehyde}{\mathop{C{{H}_{3}}CHO}}\,\]

\[B{{r}_{2}}/CC{{l}_{4}}\]

Decolourises

Dibromo derivative,

\[{{C}_{2}}{{H}_{4}}+B{{r}_{2}}\to \]\[{{C}_{2}}{{H}_{4}}B{{r}_{2}}\]

Decolourises

Tetrabromo derivative,

\[{{C}_{2}}{{H}_{2}}B{{r}_{4}}\]

Baeyer’s reagent (Alk. \[KMn{{O}_{4}}\])

Decolourises

Glycol is formed

\[\begin{array}{*{35}{l}} C{{H}_{2}}  \\|\,|  \\C{{H}_{2}}  \\\end{array}+{{H}_{2}}O+O\to \begin{array}{*{35}{l}}C{{H}_{2}}OH  \\ |  \\ C{{H}_{2}}OH  \\\end{array}\]

 

Decolourises

Oxalic acid is formed

\[\begin{array}{*{35}{l}}CH  \\|\,|\,|  \\CH  \\\end{array}+4O\to \begin{array}{*{35}{l}} COOH  \\|  \\COOH  \\\end{array}\]

Ammonical \[C{{u}_{2}}C{{l}_{2}}\]

Red precipitate

\[\begin{array}{*{35}{l}}CH  \\|\,|\,|  \\CH  \\\end{array}+C{{u}_{2}}C{{l}_{2}}+2N{{H}_{4}}OH\to \underset{\text{(Red)}}{\mathop{\begin{array}{*{35}{l}}CCu  \\|\,|\,|  \\CCu  \\\end{array}}}\,\]\[+\text{ }2N{{H}_{4}}Cl\text{ }+\text{ }2{{H}_{2}}O\]

Ammonical silver nitrate

\[\begin{array}{*{35}{l}}CH  \\|\,|\,|  \\CH  \\\end{array}+2AgN{{O}_{3}}+2N{{H}_{4}}OH\to \begin{array}{*{35}{l}}C-Ag  \\|\,|\,|  \\C-Ag  \\\end{array}\]  \[+\text{ }2N{{H}_{4}}Cl\text{ }+\text{ }2{{H}_{2}}O\]

             

Cycloalkane

(1) Methods of preparation

(i) From dihalogen compounds (Freund reaction):

 

(ii) From alkenes :

 

(iii) From Aromatic compounds

 

 

(2) Physical properties

(i) First two members are gases, next three members are liquids and higher ones are solids.

(ii) They are insoluble in water but soluble in alcohol and ether.

(iii) Their boiling points show a gradual increase with increase of molecular mass. Their boiling points are higher than those of isomeric alkenes or corresponding alkanes.

(iv) Their density increase gradually with increase of molecular mass.

(3) Chemical properties : Cycloalkanes behave both like alkenes and alkanes in their chemical properties. All cycloalkanes undergo substitution reaction with halogen in the presence of light (like alkane).  All cycloalkane (lower members) undergo addition reaction (ex. Addition of \[{{H}_{2}},\,HX,\,{{X}_{2}}\]). Further the tendency of forming addition compounds decreases with increase in size of ring cyclopropane  >  Cyclobutane > Cyclopentane. Relative ring opening of ring is explained by Baeyer strain theory.

(i) Addition in spiro cycloalkane : If two cycloalkane fused with one another then addition take place in small ring

 

 

Because small ring is more unstable than large ring

Higher cycloalkanes do not give addition due to more stability.

(ii) Free radical substitution with \[C{{l}_{2}}\]

 

(iii) Addition reaction

 

 

(iv) Oxidation

 

    

Other Topics


You need to login to perform this action.
You will be redirected in 3 sec spinner