11th Class Physics Thermodynamical Processes

  • question_answer 34)
                      A cycle followed by an engine (made of one mole of perfect gas in a cylinder with a piston) is shown in Fig.                 A to B : volume constant                 B to C : adiabatic                 C to D : volume constant                 D to A :adiabatic                 \[{{V}_{C}}=\,{{V}_{D}}=\,2{{V}_{A}}=\,2{{V}_{B}}\]                 (a) In which part of the cycle heat is supplied to the engine from outside?                 (b) It which part of the cycle beat is being given to die surrounding by the engine?                 (c) What is the work done by the engine in one cycle? Write your answer in term of\[{{P}_{A}},\text{ }{{P}_{B}},{{V}_{A}}\].                 (d) What is die efficiency of the engine?                 [[\[\gamma ={\scriptstyle{}^{5}/{}_{3}}\] for the gas], (\[{{C}_{\upsilon }}=\frac{3}{2}R\] for one mole)]                

    Answer:

                      (a) Heat is supplied to increase the pressure at constant volume, so heat is supplied to die engine from outside while going from A to B.                 (b) Heat is given to the surrounding while going from C to D.                 (c) \[{{W}_{AB}}=\,\int\limits_{A}^{B}{P\,dV}\,=\,0\]                \[(\because \,{{V}_{A}}=\,{{V}_{B}})\]                 \[{{W}_{BC}}=\,\frac{1}{\gamma -1}\,[{{P}_{B}}\,{{V}_{B}}-{{P}_{C}}{{V}_{C}}]\]                 This is work done during adiabatic expansion.                 or \[{{W}_{BC}}\,=\frac{1}{1-\gamma }\,[{{P}_{C}}{{V}_{C}}-\,{{P}_{B}}{{V}_{B}}]\]                 \[=\frac{1}{1-\gamma }\,[{{P}_{C}}\,\times 2{{V}_{B}}-{{P}_{B}}{{V}_{B}}]\]                 \[=\,\frac{{{V}_{B}}}{1-\gamma }\,[2{{P}_{C}}-\,{{P}_{B}}]\]                 Now \[{{P}_{B}}V_{B}^{\gamma }\,=\,{{P}_{C}}\,V_{C}^{\gamma }\]\[\therefore \]\[\,{{P}_{C}}\,={{\left( \frac{{{V}_{B}}}{{{V}_{C}}} \right)}^{\gamma }}\]                 \[=\,{{P}_{B}}{{\left( \frac{1}{2} \right)}^{\gamma }}\]                 \[={{2}^{-\gamma }}\,{{P}_{B}}\]                 \[\therefore \] \[{{W}_{BC}}=\,\frac{{{P}_{B}}{{V}_{B}}}{1-\gamma }\,[{{2}^{-\gamma +1}}-1]\] ?.. (i)                 \[{{W}_{CD}}=\,\int\limits_{C}^{D}{PdV}\,=\,0\]           \[(\because \,\,{{V}_{C}}=\,{{V}_{D}})\]                 \[{{W}_{DA}}=\,\frac{1}{\gamma -1}\,[{{P}_{D}}\,{{V}_{D}}\,-\,{{P}_{A}}{{V}_{A}}]\,=\,\frac{1}{\gamma -1}\]                 \[\left( {{P}_{D}}\times \text{ }2{{V}_{A}}\text{ }{{P}_{A}}{{V}_{A}} \right)\]                 \[=\,\frac{{{V}_{A}}}{\gamma -1}\,[2{{P}_{D}}-{{P}_{A}}]\]                 Also \[{{P}_{D}}V_{D}^{\gamma }\,=\,{{P}_{A}}V_{A}^{\gamma }\] or \[{{P}_{D}}=\,{{\left( \frac{{{V}_{A}}}{{{V}_{D}}} \right)}^{\gamma }}\,{{P}_{A}}\,\]                 \[={{2}^{-\gamma }}{{P}_{A}}\]                 \[\therefore \] \[{{W}_{DA}}=\,\frac{{{P}_{A}}{{V}_{A}}}{\gamma -1}\,[{{2}^{-\gamma +1}}-1]\] ?.. (ii)                 (d) Head supplied (during the process A to B).                 \[Q=\,{{C}_{\upsilon }}\,({{T}_{B}}-\,{{T}_{A}})\,=\,\frac{3}{2}\,\,R\,({{T}_{B}}-\,{{T}_{A}})\]                 But \[{{P}_{A}}{{V}_{A}}=R{{T}_{A}}\]    and \[{{P}_{B}}{{V}_{B}}=\text{ }R{{T}_{B}}\]                         \[\therefore \] \[Q=\frac{3}{2}\,\,({{P}_{B}}{{V}_{B}}-\,{{P}_{A}}{{V}_{A}})\,=\frac{3}{2}\,\,({{P}_{B}}-\,{{P}_{A}})\,{{V}_{A}}\]                 \[(\because \,{{V}_{A}}\,={{V}_{B}})\]                 \[=1.5\text{ (}{{P}_{B}}{{P}_{A}})\text{ }{{V}_{A}}\]                 Now \[\eta \,=\frac{W}{Q}\,=\,\frac{0.55}{1.5}\,=\,37%\]                


You need to login to perform this action.
You will be redirected in 3 sec spinner