# 8th Class Mathematics Factorisation Question Bank

### done Factorisation

• A) $(bx+ay),(ax+by)$

B) $(a+b),(2x+2y+2z)$

C) $(x+y+z),(a+b)$

D) $(x+y-z),(a-b)$

• A) ${{x}^{2}}+2$

B) ${{x}^{2}}-2x+2$

C) ${{x}^{2}}-2$

D) ${{x}^{2}}+2x-2$

• A) $({{x}^{2}}+2x+3),({{x}^{2}}-2x+3)$

B) $({{x}^{2}}+3),({{x}^{2}}-3)$

C) $({{x}^{2}}+2x+3),({{x}^{2}}+2x+3)$

D) $({{x}^{2}}+3),({{x}^{2}}+3)$

• A) $-2$ and $5$

B) $5$ and $25$

C) $10$ and $20$

D) $6$ and $25$

• A) $(x-y)$ and $(x+2z)$

B) $(x+y)$ and $(x-2z)$

C) $(x-y)$and $(x-2z)$

D) $(x+y)$ and $(x+2z)$

• A) Amrit's answer is correct.

B) Pankaj's answer is wrong.

C) Both got correct answer.

D) Pankaj's answer is correct.

• A) $\frac{abc}{3}$

B) $3\,abc$

C) $3\,{{a}^{2}}{{b}^{2}}{{c}^{2}}$

D) $5\,{{a}^{2}}{{b}^{2}}{{c}^{2}}$

• A) $(a-4)\,(a-2)={{a}^{2}}+8-6a$

B) $(2p+3q)\,(p-q)=2{{p}^{2}}-3{{q}^{2}}$

C) $\frac{3{{p}^{2}}}{3{{p}^{2}}}=0$

D) $4\,(m-5)=4m-5$

• A) $({{x}^{2}}+{{y}^{2}})$ and $({{x}^{2}}+{{y}^{2}}-xy)$

B) $({{x}^{2}}+{{y}^{2}})$and $({{x}^{2}}-{{y}^{2}})$

C) $({{x}^{2}}+{{y}^{2}}+xy)$ and $({{x}^{2}}+{{y}^{2}}-xy)$

D) Factorization is not possible.

• A) $(3x-4),(5x+2)$

B) $(3x-4),(5x-2)$

C) $(3x+4),(5x-2)$

D) $(3x+4),(5x+2)$

• A) $5$

B) $4$

C) $2$

D) $9$

• A) $\left( \frac{x}{4}+\frac{y}{9} \right)$ and $\left( \frac{x}{4}-\frac{y}{9} \right)$

B) $\left( \frac{x}{2}+\frac{y}{9} \right)$ and $\left( \frac{x}{2}-\frac{y}{9} \right)$

C) $\left( \frac{x}{2}+\frac{y}{3} \right)$and $\left( \frac{x}{2}-\frac{y}{3} \right)$

D) $\left( \frac{x}{2}-\frac{y}{3} \right)$ and $\left( \frac{x}{4}-\frac{y}{9} \right)$

• A) $18$

B) $9$

C) $\frac{1}{2}$

D) $2$

• A) $(a-1)$and $(a-b)$

B) $(a+b)$and $(a-1)$

C) $(a+1)$and $(a-b)$

D) $(a+b)$ and $(a+1)$

• A) $p-5$

B) $p-2$

C) $p+2$

D) $p+5$

• A) ${{(3m+4)}^{2}}=3{{m}^{2}}+6m+16$

B) $n(3n+2)=3{{n}^{2}}+2n$

C) $(x-2)\,(x-8)={{x}^{2}}-16$

D) $(p+2)\,(p+4)={{p}^{2}}+8$

• A) ${{x}^{2}}-3x$

B) $3x$

C) ${{x}^{2}}+5$

D) ${{x}^{2}}+3x$

• A) $6{{p}^{3}}-6{{p}^{2}}+1$

B) $2{{p}^{3}}-6{{p}^{2}}-1$

C) $2{{p}^{3}}+6{{p}^{2}}-1$

D) $2{{p}^{3}}+6{{p}^{2}}+1$

• A) $(b-4),\,(b-8)$

B) $(b-3),\,(b-4)$

C) $(b-10),\,(b-1)$

D) $(b-7),\,(b-9)$

• A) $(2m-1)$ and $(2n-4)$

B) $(4m-1)$ and $(n-3)$

C) $(3m-2)$ and $(2n-3)$

D) $(4m-4)$ and $(n-1)$

• A) ${{(a+2)}^{2}}$

B) ${{(a+1)}^{2}}$

C) ${{(a-2)}^{2}}$

D) ${{(a-1)}^{2}}$

• A) ${{x}^{2}}{{(x+2)}^{2}}$

B) $x{{(x+3)}^{2}}$

C) $x(x+3)$

D) ${{x}^{2}}(x+3)$

• A) $(3x+4y)$ and $(3x-4y)$

B) $(3x+4y)$and $(3x+4y)$

C) $(3x+2y)$ and $(2x-3y)$

D) $(3x-4y)$ and $(3x+2y)$

• A) $(a+d),\,(a-d),(b+c)$ and $(b-c)$

B) $({{a}^{2}}-{{b}^{2}})$

C) $({{a}^{2}}-{{d}^{2}})$ and $({{b}^{2}}+{{c}^{2}})$

D) $({{a}^{2}}+{{d}^{2}})$ and $({{b}^{2}}-{{c}^{2}})$

• A) $3{{a}^{1}}c$

B) $3{{a}^{2}}c$

C) $3{{a}^{3}}c$

D) $4{{a}^{2}}c$

• A) $\frac{3}{2}{{a}^{2}}{{b}^{2}}$

B) $\frac{9}{2}{{a}^{2}}{{b}^{2}}$

C) $\frac{3}{2}{{a}^{3}}{{b}^{3}}$

D) $\frac{7}{2}{{a}^{2}}{{b}^{2}}$

• A) $4x$

B) $4x{{y}^{2}}z$

C) $-4x$

D) $4{{x}^{3}}{{y}^{2}}z$

• A) $2{{p}^{3}}+7{{p}^{2}}+3p+1$

B) $2{{p}^{3}}-7{{p}^{2}}+3p-1$

C) $2{{p}^{3}}-7{{p}^{2}}-3p-1$

D) $2{{p}^{3}}+7{{p}^{2}}-3p-1$

• A) $\frac{3(3m+4)}{7}$

B) $\frac{3(4m+3)}{7}$

C) $3\left( \frac{3m-4}{7} \right)$

D) $\frac{-3(4m+3)}{7}$

• A) $(3x+4y)\,(z+2p)$

B) $(3x+4y)\,(z-2p)$

C) $(3x-4y)\,(z+2p)$

D) $(3x-4y)\,(z-2p)$

• A) $4\,(2p+3q+r)$

B) $4\,(2p+3q-r)$

C) $4\,(2p-3q+r)$

D) $4\,(2p-3q-r)$

• A) $\frac{4l}{3n}$

B) $-\frac{4l}{3n}$

C) $\frac{4n}{3l}$

D) $\frac{-4n}{3l}$

• A) $5q(q-16)$

B) $(q-4)$

C) $5q({{q}^{2}}+16)$

D) $(q+16)$

• A) $3mn(2m+3nl+4l)$

B) $4mn(4m+4nl+2l)$

C) $5mn(2m+2nl+l)$

D) $3mn(m+2nl+2l)$

• A) $4{{m}^{2}}(m-3)$

B) $4m(m-3)$

C) $4{{m}^{2}}(m+3)$

D) $4m(m+3)$

• A) $(7x-6)\,(7x+6)$

B) $(7x+36)7$

C) $(7x+6)6$

D) $(7x+6)\,(7x+36)$

• A) $3(z+1)\,(z+2)$

B) $4(z+2)(z+3)$

C) $2(z+3)\,(z+1)$

D) $3(z+5)\,(z+5)$

• A) $(x-8)\,cm$

B) $(x-4)\,cm$

C) $(x+4)\,cm$

D) $(x+2)\,cm$

• A) $64-{{x}^{2}}=(64-x)\,(64+x)$

B) $27{{x}^{2}}-48=3(3x+4)\,(3x-4)$

C) ${{y}^{2}}-81=(y+9)\,(y+9)$

D) $36-{{p}^{2}}=(p-6)\,(p+6)$

• A) $200{{y}^{2}}-2=2(10y+1)\,(10y-1)$

B) $49{{x}^{2}}-36=(7x+6)\,(7x-6)$

C) $200{{y}^{2}}-2=2(10y+1)\,(10y+1)$

D) $36-100{{k}^{2}}=(6+10k)\,(6-10k)$

• A) $(x+4y),(x-4y),(x+2y)$and $(x-2y)$

B) $({{x}^{2}}+2x-8)$ and $({{x}^{2}}+2x-3)$

C) $(x+3y),(x-3y),(x+2y)$and $(x-2y)$

D) $({{x}^{2}}-2x-8)$ and $({{x}^{2}}+2x+3)$

• A) $(x+1)\,(x-1)\,(2x+1)\,(2x-1)$

B) $(2x-1)\,(4{{x}^{2}}+2x+1)$

C) $(x+2)\,(2x-3)(x-1)\,(2x+3)$

D) $(x+2)\,(x-2)\,(3x+2)\,(3x-2)$

• A) ${{\left( a-\frac{2}{5} \right)}^{2}}$

B) ${{\left( 3a-\frac{2}{5} \right)}^{2}}$

C) ${{\left( 2a-\frac{2}{5} \right)}^{2}}$

D) ${{\left( 3a+\frac{2}{5} \right)}^{2}}$

• A) $(x-y)$ and $\left[ a(x-y)+b+3 \right]$

B) $(a-b)$ and $(3x-3y)$

C) $(x-y)$ and $({{x}^{2}}+a+1)$ and $({{y}^{2}}+b+1)$

D) $(ax-y)$ and $[a(x-y)+b+3]$

• A) $\left( x-\frac{1}{a} \right)$ and $(x+a)$

B) $\left( x-\frac{1}{{{a}^{2}}} \right)$ and $(x+a)$

C) $\left( x-\frac{1}{{{a}^{2}}} \right)$ and $(x-a)$

D) $\left( x+\frac{1}{{{a}^{2}}} \right)$ and $(x+a)$

• A) $(p+q+r)\,(p+q-r)$$(p-q+r)\,(p-q-r)$

B) $(p-q-r)\,({{p}^{2}}-{{q}^{2}}-{{r}^{2}})$

C) $(p-q-r)$ $(2p-2q-2r)$

D) $(p+q-r)\,({{p}^{2}}-{{q}^{2}}-{{r}^{2}})$

• A) $4\,(3a+4b)$

B) $3\,(3a-4b)$

C) $3\,(3a+4b)$

D) $4\,(3a-4b)$

• A) $2(4p+3)\,(4p-3)$

B) $2(3+4p)\,(3-4p)$

C) $4(3+4p)\,(3-4p)$

D) $4(3+2p)\,(3-2p)$

• A) $27k-5{{k}^{2}}=k(27-5k)$

B) $6{{y}^{2}}-12y=6y(y-2)$

C) $16x-4{{x}^{2}}=4x(4-{{x}^{2}})$

D) $121{{n}^{2}}-22n=11n(11n-2)$

• A) $2-32{{x}^{2}}=2{{(1-4x)}^{2}}$

B) $4{{x}^{2}}-49=(7-2x)\,(7+2x)$

C) $-18{{x}^{2}}+27x=9x(2x-3)$

D) $-25-150{{p}^{2}}=(-25)\,(1+6{{p}^{2}})$