JEE Main & Advanced Mathematics Trigonometrical Ratios and Identities Trigonometrical Ratios In Terms of Each Other

Trigonometrical Ratios In Terms of Each Other

Category : JEE Main & Advanced

   

  \[\mathbf{sin}\,\mathbf{\theta }\] \[\mathbf{cos}\,\mathbf{\theta }\] \[\mathbf{tan}\,\mathbf{\theta }\] \[\mathbf{cot}\,\,\mathbf{\theta }\] \[\mathbf{sec}\,\,\mathbf{\theta }\] \[\mathbf{cosec}\,\,\mathbf{\theta }\]
\[\mathbf{sin}\,\mathbf{\theta }\] \[\sin \,\theta \] \[\sqrt{1-{{\cos }^{2}}\theta }\] \[\frac{\tan \theta }{\sqrt{1+{{\tan }^{2}}\theta }}\] \[\frac{1}{\sqrt{1+{{\cot }^{2}}\theta }}\] \[\frac{\sqrt{{{\sec }^{2}}\theta -1}}{\sec \theta }\] \[\frac{1}{\text{cosec}\theta }\]
\[\mathbf{cos}\,\mathbf{\theta }\] \[\sqrt{1-{{\sin }^{2}}\theta }\] \[\cos \theta \] \[\frac{1}{\sqrt{1+{{\tan }^{2}}\theta }}\] \[\frac{\cot \theta }{\sqrt{1+{{\cot }^{2}}\theta }}\] \[\frac{1}{\sec \theta }\] \[\frac{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}{\text{cosec}\theta }\]
\[\mathbf{tan}\,\mathbf{\theta }\] \[\frac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }}\] \[\frac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }\] \[\tan \,\theta \] \[\frac{1}{\cot \theta }\] \[\sqrt{{{\sec }^{2}}\theta -1}\] \[\frac{1}{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}\]
\[\mathbf{cot}\,\,\mathbf{\theta }\] \[\frac{\sqrt{1-{{\sin }^{2}}\theta }}{\sin \theta }\] \[\frac{\cos \theta }{\sqrt{1-{{\cos }^{2}}\theta }}\] \[\frac{1}{\tan \theta }\] \[\cot \,\theta \] \[\frac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\] \[\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}\]
\[\mathbf{sec}\,\,\mathbf{\theta }\] \[\frac{1}{\sqrt{1-{{\sin }^{2}}\theta }}\] \[\frac{1}{\cos \theta }\] \[\sqrt{1+{{\tan }^{2}}\theta }\] \[\frac{\sqrt{1+{{\cot }^{2}}\theta }}{\cot \theta }\] \[\sec \,\theta \] \[\frac{\text{cosec}\theta }{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}\]
\[\mathbf{cosec}\,\,\mathbf{\theta }\] \[\frac{1}{\sin \theta }\] \[\frac{1}{\sqrt{1-{{\cos }^{2}}\theta }}\] \[\frac{\sqrt{1+{{\tan }^{2}}\theta }}{\tan \theta }\] \[\sqrt{1+{{\cot }^{2}}\theta }\] \[\frac{\sec \theta }{\sqrt{{{\sec }^{2}}\theta -1}}\] \[\text{cosec}\,\,\theta \]
 



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos