JEE Main & Advanced Mathematics Trigonometrical Ratios and Identities Trigonometrical Ratios for Some Special Angles

Trigonometrical Ratios for Some Special Angles

Category : JEE Main & Advanced

 

  \[\theta \] \[7\frac{{{1}^{o}}}{2}\] \[{{15}^{o}}\] \[22\frac{{{1}^{o}}}{2}\] \[{{18}^{o}}\] \[{{36}^{o}}\]
\[\sin \,\theta \] \[\frac{\sqrt{4-\sqrt{2}-\sqrt{6}}}{2\sqrt{2}}\] \[\frac{\sqrt{3}-1}{2\sqrt{2}}\] \[\frac{1}{2}\sqrt{2-\sqrt{2}}\] \[\frac{\sqrt{5}-1}{4}\] \[\frac{1}{4}\sqrt{10-2\sqrt{5}}\]
\[\cos \theta \] \[\frac{\sqrt{4+\sqrt{2}+\sqrt{6}}}{2\sqrt{2}}\] \[\frac{\sqrt{3}+1}{2\sqrt{2}}\] \[\frac{1}{2}\sqrt{2+\sqrt{2}}\] \[\frac{1}{4}\sqrt{10+2\sqrt{5}}\] \[\frac{\sqrt{5}+1}{4}\]
\[\tan \theta \] \[\begin{align}   & (\sqrt{3}-\sqrt{2})\, \\  & (\sqrt{2}-1) \\ \end{align}\] \[2-\sqrt{3}\] \[\sqrt{2}-1\] \[\frac{\sqrt{25-10\sqrt{15}}}{5}\] \[\sqrt{5-2\sqrt{5}}\]
 



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos