# JEE Main & Advanced Mathematics Trigonometric Equations Trigonometrical Equations With Their General Solution

## Trigonometrical Equations With Their General Solution

Category : JEE Main & Advanced

 Trigonometrical equation General solution $\sin \theta =0$ $\theta =n\pi$ $\cos \theta =0$ $\theta =n\pi +\pi /2$ $\tan \theta =0$ $\theta =n\pi$ $\sin \theta =1$ $\theta =2n\pi +\pi /2$ $\cos \theta =1$ $\theta =2n\pi$ $\sin \theta =\sin \alpha$ $\theta =n\pi +{{(-1)}^{n}}\alpha$ $\cos \theta =\cos \alpha$ $\theta =2n\pi \pm \alpha$ $\tan \theta =\tan \alpha$ $\theta =n\pi \pm \alpha$ ${{\sin }^{2}}\theta ={{\sin }^{2}}\alpha$ $\theta =n\pi \pm \alpha$ ${{\tan }^{2}}\theta ={{\tan }^{2}}\alpha$ $\theta =n\pi \pm \alpha$ ${{\cos }^{2}}\theta ={{\cos }^{2}}\alpha$ $\theta =n\pi \pm \alpha$ \left. \begin{align} & \sin \theta =\sin \alpha \\ & \cos \theta =\cos \alpha \text{ } \\ \end{align} \right|\text{ * } $\theta =2n\pi +\alpha$ \left. \begin{align} & \sin \theta =\sin \alpha \\ & \tan \theta =\tan \alpha \text{ } \\ \end{align} \right|\text{ * } $\theta =2n\pi +\alpha$ \left. \begin{align} & \tan \theta =\tan \alpha \\ & \cos \theta =\cos \alpha \text{ } \\ \end{align} \right|\text{ * } $\theta =2n\pi +\alpha$

LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec