JEE Main & Advanced Mathematics Determinants Product of Two Determinants

Product of Two Determinants

Category : JEE Main & Advanced

 Let the two determinants of third order be,

 

\[{{D}_{1}}=\left| \,\begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix} \right|\] and \[{{D}_{2}}=\left| \,\begin{matrix} {{\alpha }_{1}} & {{\beta }_{1}} & {{\gamma }_{1}}  \\ {{\alpha }_{2}} & {{\beta }_{2}} & {{\gamma }_{2}}  \\ {{\alpha }_{3}} & {{\beta }_{3}} & {{\gamma }_{3}}  \\ \end{matrix}\, \right|\].

 

Let D be their product.

 

Then \[D=\left| \,\begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix} \right|\,\,\,\times \left| \,\begin{matrix} {{\alpha }_{1}} & {{\beta }_{1}} & {{\gamma }_{1}}  \\ {{\alpha }_{2}} & {{\beta }_{2}} & {{\gamma }_{2}}  \\ {{\alpha }_{3}} & {{\beta }_{3}} & {{\gamma }_{3}}  \\ \end{matrix}\, \right|\]

 

 

\[=\left| \,\begin{matrix} {{a}_{1}}{{\alpha }_{1}}+{{b}_{1}}{{\beta }_{1}}+{{c}_{1}}{{\gamma }_{1}} & {{a}_{1}}{{\alpha }_{2}}+{{b}_{1}}{{\beta }_{2}}+{{c}_{1}}{{\gamma }_{2}} & {{a}_{1}}{{\alpha }_{3}}+{{b}_{1}}{{\beta }_{3}}+{{c}_{1}}{{\gamma }_{3}}  \\ {{a}_{2}}{{\alpha }_{1}}+{{b}_{2}}{{\beta }_{1}}+{{c}_{2}}{{\gamma }_{1}} & {{a}_{2}}{{\alpha }_{2}}+{{b}_{2}}{{\beta }_{2}}+{{c}_{2}}{{\gamma }_{2}} & {{a}_{2}}{{\alpha }_{3}}+{{b}_{2}}{{\beta }_{3}}+{{c}_{2}}{{\gamma }_{3}}  \\ {{a}_{3}}{{\alpha }_{1}}+{{b}_{3}}{{\beta }_{1}}+{{c}_{3}}{{\gamma }_{1}} & {{a}_{3}}{{\alpha }_{2}}+{{b}_{3}}{{\beta }_{2}}+{{c}_{3}}{{\gamma }_{2}} & {{a}_{3}}{{\alpha }_{3}}+{{b}_{3}}{{\beta }_{3}}+{{c}_{3}}{{\gamma }_{3}}  \\ \end{matrix}\, \right|\]

 

 

We can also multiply rows by columns or columns by rows or columns by columns.

 



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos