# JEE Main & Advanced Mathematics Determinants Minors and Cofactors

## Minors and Cofactors

Category : JEE Main & Advanced

(1) Minor of an element : If we take the element of the determinant and delete (remove) the row and column containing that element, the determinant left is called the minor of that element. It is denoted by ${{M}_{ij}}$.

Consider the determinant $\Delta =\left| \,\begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix}\, \right|$,

then determinant of minors $M=\left| \,\begin{matrix} {{M}_{11}} & {{M}_{12}} & {{M}_{13}} \\ {{M}_{21}} & {{M}_{22}} & {{M}_{23}} \\ {{M}_{31}} & {{M}_{32}} & {{M}_{33}} \\ \end{matrix}\, \right|$

where  ${{M}_{11}}=$ minor of ${{a}_{11}}=\left| \,\begin{matrix} {{a}_{22}} & {{a}_{23}} \\ {{a}_{32}} & {{a}_{33}} \\ \end{matrix}\, \right|$  ${{M}_{12}}=$minor of  ${{a}_{12}}=\left| \,\begin{matrix} {{a}_{21}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{33}} \\ \end{matrix}\, \right|$ ${{M}_{13}}=$ minor of ${{a}_{13}}=\left| \,\begin{matrix} {{a}_{21}} & {{a}_{22}} \\ {{a}_{31}} & {{a}_{32}} \\ \end{matrix}\, \right|$

Similarly, we can find the minors of other elements . Using this concept the value of determinant can be

$\Delta ={{a}_{11}}{{M}_{11}}-{{a}_{12}}{{M}_{12}}+{{a}_{13}}{{M}_{13}}$

or, $\Delta =-{{a}_{21}}{{M}_{21}}+{{a}_{22}}{{M}_{22}}-{{a}_{23}}{{M}_{23}}$

or,  $\Delta ={{a}_{31}}{{M}_{31}}-{{a}_{32}}{{M}_{32}}+{{a}_{33}}{{M}_{33}}$.

(2) Cofactor of an element : The cofactor of an element ${{a}_{ij}}$ (i.e. the element in the ${{i}^{th}}$ row and ${{j}^{th}}$ column) is defined as ${{(-1)}^{i+j}}$ times the minor of that element. It is denoted by ${{C}_{ij}}$ or ${{A}_{ij}}$ or ${{F}_{ij}}$. ${{C}_{ij}}={{(-1)}^{i+j}}{{M}_{ij}}$

If $\Delta =\left| \,\begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix}\, \right|$, then determinant of cofactors is $C=\left| \,\begin{matrix} {{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\ {{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\ {{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\ \end{matrix}\, \right|$

where ${{C}_{11}}={{(-1)}^{1+1}}{{M}_{11}}=+{{M}_{11}}$, ${{C}_{12}}={{(-1)}^{1+2}}{{M}_{12}}=-{{M}_{12}}$  and  ${{C}_{13}}={{(-1)}^{1+3}}{{M}_{13}}=+{{M}_{13}}$

Similarly, we can find the cofactors of other elements.

LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec