JEE Main & Advanced Mathematics Determinants Application of Determinants in Solving a System of Linear Equations

Application of Determinants in Solving a System of Linear Equations

Category : JEE Main & Advanced

 

(1) Solution of system of linear equations in three variables by Cramer's rule : The solution of the system of linear equations  \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}}\]                       .....(i)

 

\[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}}\]                       .....(ii)

 

\[{{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}}\]                       .....(iii)

 

Is given by \[x=\frac{{{D}_{1}}}{D},\,\,\,\,\,\,y=\frac{{{D}_{2}}}{D}\] and \[z=\frac{{{D}_{3}}}{D}\],

 

where, \[D=\left| \,\begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix}\, \right|\,,\]        \[{{D}_{1}}=\left| \,\begin{matrix} {{d}_{1}} & {{b}_{1}} & {{c}_{1}}  \\ {{d}_{2}} & {{b}_{2}} & {{c}_{2}}  \\ {{d}_{3}} & {{b}_{3}} & {{c}_{3}}  \\ \end{matrix}\, \right|\]

 

\[{{D}_{2}}=\left| \,\begin{matrix} {{a}_{1}} & {{d}_{1}} & {{c}_{1}}  \\ {{a}_{2}} & {{d}_{2}} & {{c}_{2}}  \\ {{a}_{3}} & {{d}_{3}} & {{c}_{3}}  \\ \end{matrix}\, \right|\,,\] and \[{{D}_{3}}=\left| \,\begin{matrix} {{a}_{1}} & {{b}_{1}} & {{d}_{1}}  \\ {{a}_{2}} & {{b}_{2}} & {{d}_{2}}  \\ {{a}_{3}} & {{b}_{3}} & {{d}_{3}}  \\ \end{matrix}\, \right|\]

 

Provided that \[D\ne 0\]

 

(2) Conditions for consistency : For a system of 3 simultaneous linear equations in three unknown variable.

 

(i) If \[D\ne 0\], then the given system of equations is consistent and has a unique solution given by \[x=\frac{{{D}_{1}}}{D},\,\,\,y=\frac{{{D}_{2}}}{D}\] and \[z=\frac{{{D}_{3}}}{D}\]

 

(ii) If \[D=0\] and \[{{D}_{1}}={{D}_{2}}={{D}_{3}}=0\], then the given system of equations is consistent with infinitely many solutions.

 

(iii) If \[D=0\] and at least one of the determinants \[{{D}_{1}},\,\,{{D}_{2}},\,\,{{D}_{3}}\] is non-zero, then given of equations is inconsistent.



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos