# 8th Class Mathematics Squares and Square Roots Adding and Subtracting Square Roots

## Adding and Subtracting Square Roots

Category : 8th Class

### Adding and Subtracting Square Roots

Find the square root of $21\frac{2797}{3364}$.

(a) $\frac{289}{58}$

(b) $\frac{271}{58}$

(c) $\frac{281}{58}$

(d) $\frac{291}{58}$

(e) None of these

Find the square root 0.000529.

(a) 0.023

(b) 0.027

(c) 0.033

(d) 0.037

(e) None of these

If $\sqrt{2}=1.414,\sqrt{3}=1.732$ and $\sqrt{\text{5}}=\text{2}.\text{236}$, then find the value of  $\sqrt{\frac{800}{45}}$.

(a) 5.214

(b) 4.216

(c) 4.214

(d) 5.216

(e) None of these

Simplify: $\frac{\sqrt{1024}-\sqrt{324}}{\sqrt{441+\sqrt{196}}}$

(a) $\frac{2}{5}$

(b) $\sqrt{\frac{2}{5}}$

(c) $\sqrt{\frac{8}{5}}$

(d) $\sqrt{\frac{4}{25}}$

(e) None of these

A rectangular garden is such that its length is twice the breath and its perimeter is equal to the perimetre of the square field whose area is given as $\mathbf{5184}\text{ }{{\mathbf{m}}^{\mathbf{2}}}$. The area of the rectangular field is:

(a) $\text{56}0\text{8}\,{{\text{m}}^{\text{2}}}$

(b) $\text{46}0\text{8}\,{{\text{m}}^{\text{2}}}$

(c) $\text{36}0\text{8}\,{{\text{m}}^{\text{2}}}$

(d) $\text{24}0\text{8}\,{{\text{m}}^{\text{2}}}$

(e) None of these

If $\sqrt{4096}=64$ then find the value of $\sqrt{4096}+\sqrt{4093}+\sqrt{0.004096}$.

(a) 70.646

(b) 60.464

(c) 70.464

(d) 60.646

(e) None of these

Find the value of 'y' such that $\sqrt{188+\sqrt{53+\sqrt{y}}}=14$.

(a) 121

(b) 11

(c) 1331

(d) 161

(e) None of these

If $\sqrt{1+\frac{25}{144}}=1+\frac{p}{12}$, then find the value of p for which this is satisfied.

(a) (-1, 25)

(b) (1, -25)

(c) (-1, -25)

(d) (1, 25)

(e) None of these

Find the value of y such that $\sqrt{1+\sqrt{1-\frac{2176}{2401}}}=1+\frac{y}{7}$.

(a) (1, -15)

(b) (-1, -15)

(c) (1, 15)

(d) (-1, 15)

(e) None of these