7th Class Mathematics Integers Simplifying Arithmetic Expressions

Simplifying Arithmetic Expressions

Category : 7th Class

*       Simplifying Arithmetic Expressions

 

To simplify arithmetic expression follow BODMAS RULE  

 

The value of \[~24-52\left\{ 5-\overline{\left( 13-8 \right)} \right\}\div \left[ 8\text{ }\{5+\left( -7 \right)\times \left( -9 \right)\} \right]\] is ......

(a) 124                                                 

(b) \[-24\]

(c) \[-529\]                          

(d) \[-\left( -24 \right)\]

(e) None of these  

 

Answer: (d)

Explanation

We have: \[24-52\left\{ 5-\left( 13-8 \right) \right\}\div \left[ 8\text{ }\{5\text{ }+\left( -7 \right)\times \left( -9 \right)\} \right]\]

\[=24-52\left\{ 5-5 \right\}\div \left[ 8\{5+63\} \right]\]                

\[=24-52\times 0\div \left[ 8\text{ }x\text{ }68 \right]\]

\[=24-52\times 0\div 544\]

\[=24-52\times 0\]

\[=24\]

we can write 24 as \[-\left( -24 \right)\] also.  

 

 

Pamela tries to use bracket for a mathematical expression "twenty four multiplied by twelve more than the difference of twenty three and five". The correct representation is.

(a) \[24\times \left\{ \left( 23-5 \right)+12 \right\}\]                       

(b) \[24\times \left\{ \left( 23-5 \right) \right\}+12\]

(c) \[24\times \left( 23-5+12 \right)\]                     

(d) \[24\times 23-5+12\]                

(e) None of these  

 

Answer: (a)

Explanation

The correct representation is \[24\times \left\{ \left( 23-5 \right)+12 \right\}\]    

 

The value of \[29-2\left\{ 6-\left( 7-3 \right) \right\}+\left[ 3\times \{5+\left( -3 \right)\times \left( -2 \right)\} \right]\]is____.             

(a) 58                                                       

(b) -59

(c) 57                                                    

(d) 59             

(e) None of these  

 

Answer: (a)    

 

 

 

 

  If \[P=45-\left[ 5+\{60-\left( 39-8 \right)\} \right]\]and \[Q=-12+\left[ 25-2\{16-9\} \right]\] than then \[\left| P \right|+\left| Q \right|=?\]\[\left| P \right|+\left| Q \right|=?\]

(a) 10                                                    

(b) \[-10\]

(c) 20                                                    

(d) 12

(e) None of these  

 

Answer: (d)

Explanation

\[p=45-[5+\{60-(39-8)\}]=45-[5+\{60-31\}]\]

\[=45-\left( 5+29 \right]=45-34=11\]and \[Q=-12+\left[ 25-\{2\left( 16-9 \right)\} \right]\]                

\[=-12+\left[ 25-\{2\times 7\} \right]=-12+\left[ 25-14 \right]=-12+11=-1\]

Hence \[\left| P \right|+\left| Q \right|=\left| 11 \right|+\left| -1 \right|=11+1=12\]  

 

 

  There are two integers X and Y such that 5 and T are their additive inverse respectively then \[\left| X \right|+\left| Y \right|+\left| S \right|+\left| T \right|\] is equal to

(a)\[\left| X \right|\]                                                    

(b) \[\left| Y \right|+\left| S \right|\]

(c)\[2\left( \left| X \right|+|Y| \right)\]              

(d) \[\left| X \right|+\left| Y \right|\]

(e) None of these  

 

Answer: (c)

Explanation

Here, \[\left| S \right|=\left| X \right|\]and \[\left| T \right|=\left| Y \right|\]hence,

\[\left| X \right|+\left| Y \right|+\left| S \right|+\left| T \right|\]\[=\left| X \right|+\left| Y \right|+\left| X \right|+\left| Y \right|=2\left( \left| X \right|+|Y| \right)\]  

 

 

 

  If\[P=\left[ 29-\left( -2 \right)\{6-\left( 7-3 \right)\} \right]\]and \[Q=\left[ 3\times \{5+\left( -3 \right)\times \left( -2 \right)\} \right]\]then P - Q is equal to

(a) 10                                                    

(b) 1

(c) -1                                                     

(d) 2

(e) None of these

 

Answer: (b)      

 

 

 

  • The set of integers are Z \[=\left\{ ....,-3,-2,-1,0,\text{ }1,2,\text{ }3,\text{ }......\text{ } \right\}\]
  • "0" is neither negative nor positive integers.
  • 0 is always greater than negative integers and less than positive integers
  • Absolute value of an integer defined as follows
  • The product of two negative or two positive integers is always positive.
  • The product of one negative and one positive integer is always negative.]
  • If a and b are integers so a < b then -a > - b.
  • \[-x\]and x are additive integers of each other.
  • The quotient of two negative or two positive integers is always positive.
  • The quotietit of one negative and one positive integer is always negative.

 

 

 

 

  • The number of spatial dimensions we live in is 3
  • The smallest number of colors sufficient to color all planar maps is four.
  • The only number of the form \[{{x}^{y}}={{y}^{x}}\]with x and y different integers is SIXTEEN
  • The only number (other than 0) that is twice the sum of its digits is EIGHTEEN    



LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos